arXiv daily

Cryptography and Security (cs.CR)

Fri, 01 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Account Abstraction, Analysed

Authors:Qin Wang, Shiping Chen

Abstract: Ethereum recently unveiled its upcoming roadmap's \textit{Splurge} phase, highlighting the integration of EIP-\hlhref{https://eips.ethereum.org/EIPS/eip-3074}{4337} as a foundational standard for account abstraction (AA). AA aims to enhance user accessibility and facilitate the expansion of functionalities. Anticipatedly, the deployment of AA is poised to attract a broad spectrum of new users and ignite further innovation in DApps. In this paper, we elucidate the underlying operating mechanisms of this new concept, as well as provide a review of concurrent advancements in accounts, wallets, and standards related to its development. We step further by conducting a preliminary security evaluation to qualitatively assess the extent of security enhancements achieved through AA updates.

2.Privacy Attacks and Defenses for Digital Twin Migrations in Vehicular Metaverses

Authors:Xiaofeng Luo, Jinbo Wen, Jiawen Kang, Jiangtian Nie, Zehui Xiong, Yang Zhang, Zhaohui Yang, Shengli Xie

Abstract: The gradual fusion of intelligent transportation systems with metaverse technologies is giving rise to vehicular metaverses, which blend virtual spaces with physical space. As indispensable components for vehicular metaverses, Vehicular Twins (VTs) are digital replicas of Vehicular Metaverse Users (VMUs) and facilitate customized metaverse services to VMUs. VTs are established and maintained in RoadSide Units (RSUs) with sufficient computing and storage resources. Due to the limited communication coverage of RSUs and the high mobility of VMUs, VTs need to be migrated among RSUs to ensure real-time and seamless services for VMUs. However, during VT migrations, physical-virtual synchronization and massive communications among VTs may cause identity and location privacy disclosures of VMUs and VTs. In this article, we study privacy issues and the corresponding defenses for VT migrations in vehicular metaverses. We first present four kinds of specific privacy attacks during VT migrations. Then, we propose a VMU-VT dual pseudonym scheme and a synchronous pseudonym change framework to defend against these attacks. Additionally, we evaluate average privacy entropy for pseudonym changes and optimize the number of pseudonym distribution based on inventory theory. Numerical results show that the average utility of VMUs under our proposed schemes is 33.8% higher than that under the equal distribution scheme, demonstrating the superiority of our schemes.