arXiv daily

Cryptography and Security (cs.CR)

Mon, 21 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Static Application Security Testing of Consensus-Critical Code in the Cosmos Network

Authors:Jasper Surmont, Weihong Wang, Tom Van Cutsem

Abstract: Blockchains require deterministic execution in order to reach consensus. This is often guaranteed in languages designed to write smart contracts, such as Solidity. Application-specific blockchains or ``appchains'' allow the blockchain application logic to be written using general-purpose programming languages, giving developers more flexibility but also additional responsibilities. In particular, developers must ensure that their blockchain application logic does not contain any sources of non-determinism. Any source of non-determinism may be a potential source of vulnerabilities. This paper focuses on the use of Static Application Security Testing (SAST) tools to detect such sources of non-determinism at development time. We focus on Cosmos, a prominent open-source project that lets developers build interconnected networks of application-specific blockchains. Cosmos provides a Software Development Kit (SDK) that allows these chains to be implemented in the Go programming language. We create a corpus of 11 representative Cosmos-based appchains to analyze for sources of non-determinism in Go. As part of our study, we identified cosmos-sdk-codeql, a set of CodeQL code analysis rules for Cosmos applications. We find that these rules generate many false positives and propose a refactored set of rules that more precisely detects sources of non-determinism only in code that runs as part of the blockchain logic. We demonstrate a significant increase in the precision of the rules, making the SAST tool more effective and hence potentially contributing to enhanced security for Cosmos-based blockchains.

2.Backdooring Textual Inversion for Concept Censorship

Authors:Yutong wu, Jie Zhang, Florian Kerschbaum, Tianwei Zhang

Abstract: Recent years have witnessed success in AIGC (AI Generated Content). People can make use of a pre-trained diffusion model to generate images of high quality or freely modify existing pictures with only prompts in nature language. More excitingly, the emerging personalization techniques make it feasible to create specific-desired images with only a few images as references. However, this induces severe threats if such advanced techniques are misused by malicious users, such as spreading fake news or defaming individual reputations. Thus, it is necessary to regulate personalization models (i.e., concept censorship) for their development and advancement. In this paper, we focus on the personalization technique dubbed Textual Inversion (TI), which is becoming prevailing for its lightweight nature and excellent performance. TI crafts the word embedding that contains detailed information about a specific object. Users can easily download the word embedding from public websites like Civitai and add it to their own stable diffusion model without fine-tuning for personalization. To achieve the concept censorship of a TI model, we propose leveraging the backdoor technique for good by injecting backdoors into the Textual Inversion embeddings. Briefly, we select some sensitive words as triggers during the training of TI, which will be censored for normal use. In the subsequent generation stage, if the triggers are combined with personalized embeddings as final prompts, the model will output a pre-defined target image rather than images including the desired malicious concept. To demonstrate the effectiveness of our approach, we conduct extensive experiments on Stable Diffusion, a prevailing open-sourced text-to-image model. Our code, data, and results are available at https://concept-censorship.github.io.

3.A Modular and Adaptive System for Business Email Compromise Detection

Authors:Jan Brabec, Filip Šrajer, Radek Starosta, Tomáš Sixta, Marc Dupont, Miloš Lenoch, Jiří Menšík, Florian Becker, Jakub Boros, Tomáš Pop, Pavel Novák

Abstract: The growing sophistication of Business Email Compromise (BEC) and spear phishing attacks poses significant challenges to organizations worldwide. The techniques featured in traditional spam and phishing detection are insufficient due to the tailored nature of modern BEC attacks as they often blend in with the regular benign traffic. Recent advances in machine learning, particularly in Natural Language Understanding (NLU), offer a promising avenue for combating such attacks but in a practical system, due to limitations such as data availability, operational costs, verdict explainability requirements or a need to robustly evolve the system, it is essential to combine multiple approaches together. We present CAPE, a comprehensive and efficient system for BEC detection that has been proven in a production environment for a period of over two years. Rather than being a single model, CAPE is a system that combines independent ML models and algorithms detecting BEC-related behaviors across various email modalities such as text, images, metadata and the email's communication context. This decomposition makes CAPE's verdicts naturally explainable. In the paper, we describe the design principles and constraints behind its architecture, as well as the challenges of model design, evaluation and adapting the system continuously through a Bayesian approach that combines limited data with domain knowledge. Furthermore, we elaborate on several specific behavioral detectors, such as those based on Transformer neural architectures.

4.Neural Networks Optimizations Against Concept and Data Drift in Malware Detection

Authors:William Maillet, Benjamin Marais

Abstract: Despite the promising results of machine learning models in malware detection, they face the problem of concept drift due to malware constant evolution. This leads to a decline in performance over time, as the data distribution of the new files differs from the training one, requiring regular model update. In this work, we propose a model-agnostic protocol to improve a baseline neural network to handle with the drift problem. We show the importance of feature reduction and training with the most recent validation set possible, and propose a loss function named Drift-Resilient Binary Cross-Entropy, an improvement to the classical Binary Cross-Entropy more effective against drift. We train our model on the EMBER dataset (2018) and evaluate it on a dataset of recent malicious files, collected between 2020 and 2023. Our improved model shows promising results, detecting 15.2% more malware than a baseline model.

5.SRSS: A New Chaos-Based Single-Round Single S-Box Image Encryption Scheme for Highly Auto-Correlated Data

Authors:Muhammad Shahbaz Khan, Jawad Ahmad, Hisham Ali, Nikolaos Pitropakis, Ahmed Al-Dubai, Baraq Ghaleb, William J. Buchanan

Abstract: With the advent of digital communication, securing digital images during transmission and storage has become a critical concern. The traditional s-box substitution methods often fail to effectively conceal the information within highly auto-correlated regions of an image. This paper addresses the security issues presented by three prevalent S-box substitution methods, i.e., single S-box, multiple S-boxes, and multiple rounds with multiple S-boxes, especially when handling images with highly auto-correlated pixels. To resolve the addressed security issues, this paper proposes a new scheme SRSS-the Single Round Single S-Box encryption scheme. SRSS uses a single S-box for substitution in just one round to break the pixel correlations and encrypt the plaintext image effectively. Additionally, this paper introduces a new Chaos-based Random Operation Selection System-CROSS, which nullifies the requirement for multiple S-boxes, thus reducing the encryption scheme's complexity. By randomly selecting the operation to be performed on each pixel, driven by a chaotic sequence, the proposed scheme effectively scrambles even high auto-correlation areas. When compared to the substitution methods mentioned above, the proposed encryption scheme exhibited exceptionally well in just a single round with a single S-box. The close-to-ideal statistical security analysis results, i.e., an entropy of 7.89 and a correlation coefficient of 0.007, validate the effectiveness of the proposed scheme. This research offers an innovative path forward for securing images in applications requiring low computational complexity and fast encryption and decryption speeds.