arXiv daily

Cryptography and Security (cs.CR)

Tue, 20 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Mitigating Speculation-based Attacks through Configurable Hardware/Software Co-design

Authors:Ali Hajiabadi, Archit Agarwal, Andreas Diavastos, Trevor E. Carlson

Abstract: New speculation-based attacks that affect large numbers of modern systems are disclosed regularly. Currently, CPU vendors regularly fall back to heavy-handed mitigations like using barriers or enforcing strict programming guidelines resulting in significant performance overhead. What is missing is a solution that allows for efficient mitigation and is flexible enough to address both current and future speculation vulnerabilities, without additional hardware changes. In this work, we present SpecControl, a novel hardware/software co-design, that enables new levels of security while reducing the performance overhead that has been demonstrated by state-of-the-art methodologies. SpecControl introduces a communication interface that allows compilers and application developers to inform the hardware about true branch dependencies, confidential control-flow instructions, and fine-grained instruction constraints in order to apply restrictions only when necessary. We evaluate SpecControl against known speculative execution attacks and in addition, present a new speculative fetch attack variant on the Pattern History Table (PHT) in branch predictors that shows how similar previously reported vulnerabilities are more dangerous by enabling unprivileged attacks, especially with the state-of-the-art branch predictors. SpecControl provides stronger security guarantees compared to the existing defenses while reducing the performance overhead of two state-of-the-art defenses from 51% and 43% to just 23%.

2.BASS: Boolean Automorphisms Signature Scheme

Authors:Dima Grigoriev, Ilia Ilmer, Alexey Ovchinnikov, Vladimir Shpilrain

Abstract: We offer a digital signature scheme using Boolean automorphisms of a multivariate polynomial algebra over integers. Verification part of this scheme is based on the approximation of the number of zeros of a multivariate Boolean function.

3.Reversible Adversarial Examples with Beam Search Attack and Grayscale Invariance

Authors:Haodong Zhang, Chi Man Pun, Xia Du

Abstract: Reversible adversarial examples (RAE) combine adversarial attacks and reversible data-hiding technology on a single image to prevent illegal access. Most RAE studies focus on achieving white-box attacks. In this paper, we propose a novel framework to generate reversible adversarial examples, which combines a novel beam search based black-box attack and reversible data hiding with grayscale invariance (RDH-GI). This RAE uses beam search to evaluate the adversarial gain of historical perturbations and guide adversarial perturbations. After the adversarial examples are generated, the framework RDH-GI embeds the secret data that can be recovered losslessly. Experimental results show that our method can achieve an average Peak Signal-to-Noise Ratio (PSNR) of at least 40dB compared to source images with limited query budgets. Our method can also achieve a targeted black-box reversible adversarial attack for the first time.

4.FDInet: Protecting against DNN Model Extraction via Feature Distortion Index

Authors:Hongwei Yao, Zheng Li, Haiqin Weng, Feng Xue, Kui Ren, Zhan Qin

Abstract: Machine Learning as a Service (MLaaS) platforms have gained popularity due to their accessibility, cost-efficiency, scalability, and rapid development capabilities. However, recent research has highlighted the vulnerability of cloud-based models in MLaaS to model extraction attacks. In this paper, we introduce FDINET, a novel defense mechanism that leverages the feature distribution of deep neural network (DNN) models. Concretely, by analyzing the feature distribution from the adversary's queries, we reveal that the feature distribution of these queries deviates from that of the model's training set. Based on this key observation, we propose Feature Distortion Index (FDI), a metric designed to quantitatively measure the feature distribution deviation of received queries. The proposed FDINET utilizes FDI to train a binary detector and exploits FDI similarity to identify colluding adversaries from distributed extraction attacks. We conduct extensive experiments to evaluate FDINET against six state-of-the-art extraction attacks on four benchmark datasets and four popular model architectures. Empirical results demonstrate the following findings FDINET proves to be highly effective in detecting model extraction, achieving a 100% detection accuracy on DFME and DaST. FDINET is highly efficient, using just 50 queries to raise an extraction alarm with an average confidence of 96.08% for GTSRB. FDINET exhibits the capability to identify colluding adversaries with an accuracy exceeding 91%. Additionally, it demonstrates the ability to detect two types of adaptive attacks.

5.A Survey of Multivariate Polynomial Commitment Schemes

Authors:Ihyun Nam

Abstract: A commitment scheme is a cryptographic tool that allows one to commit to a hidden value, with the option to open it later at requested places without revealing the secret itself. Commitment schemes have important applications in zero-knowledge proofs and secure multi-party computation, just to name a few. This survey introduces a few multivariate polynomial commitment schemes that are built from a variety of mathematical structures. We study how Orion is constructed using hash functions; Dory, Bulletproofs, and Vampire using the inner-product argument; Signatures of Correct Computation using polynomial factoring; DARK and Dew using groups of unknown order; and Orion+ using a CP-SNARK. For each protocol, we prove its completeness and state its security assumptions.

6.The Pricing And Hedging Of Constant Function Market Makers

Authors:Richard Dewey, Craig Newbold

Abstract: We investigate the most common type of blockchain-based decentralized exchange, which are known as constant function market makers (CFMMs). We examine the the market microstructure around CFMMs and present a model for valuing the liquidity provider (LP) mechanism and estimating the value of the associated derivatives. We develop a model with two types of traders that have different information and contribute methods for simulating the behavior of each trader and accounting for trade PnL. We also develop ideas around the equilibrium distribution of fair price conditional on the arrival of traders. Finally, we show how these findings might be used to think about parameters for alternative CFMMs.

7.SALSA VERDE: a machine learning attack on Learning With Errors with sparse small secrets

Authors:Cathy Li, Jana Sotakova, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, Kristin Lauter

Abstract: Learning with Errors (LWE) is a hard math problem used in post-quantum cryptography. Homomorphic Encryption (HE) schemes rely on the hardness of the LWE problem for their security, and two LWE-based cryptosystems were recently standardized by NIST for digital signatures and key exchange (KEM). Thus, it is critical to continue assessing the security of LWE and specific parameter choices. For example, HE uses small secrets, and the HE community has considered standardizing small sparse secrets to improve efficiency and functionality. However, prior work, SALSA and PICANTE, showed that ML attacks can recover sparse binary secrets. Building on these, we propose VERDE, an improved ML attack that can recover sparse binary, ternary, and small Gaussian secrets. Using improved preprocessing and secret recovery techniques, VERDE can attack LWE with larger dimensions ($n=512$) and smaller moduli ($\log_2 q=12$ for $n=256$), using less time and power. We propose novel architectures for scaling. Finally, we develop a theory that explains the success of ML LWE attacks.

8.On Cross-Layer Interactions of QUIC, Encrypted DNS and HTTP/3: Design, Evaluation and Dataset

Authors:Jayasree Sengupta, Mike Kosek, Justus Fries, Simone Ferlin, Pratyush Dikshit, Vaibhav Bajpai

Abstract: Every Web session involves a DNS resolution. While, in the last decade, we witnessed a promising trend towards an encrypted Web in general, DNS encryption has only recently gained traction with the standardisation of DNS over TLS (DoT) and DNS over HTTPS (DoH). Meanwhile, the rapid rise of QUIC deployment has now opened up an exciting opportunity to utilise the same protocol to not only encrypt Web communications, but also DNS. In this paper, we evaluate this benefit of using QUIC to coalesce name resolution via DNS over QUIC (DoQ), and Web content delivery via HTTP/3 (H3) with 0-RTT. We compare this scenario using several possible combinations where H3 is used in conjunction with DoH and DoQ, as well as the unencrypted DNS over UDP (DoUDP). We observe, that when using H3 1-RTT, page load times with DoH can get inflated by $>$30\% over fixed-line and by $>$50\% over mobile when compared to unencrypted DNS with DoUDP. However, this cost of encryption can be drastically reduced when encrypted connections are coalesced (DoQ + H3 0-RTT), thereby reducing the page load times by 1/3 over fixed-line and 1/2 over mobile, overall making connection coalescing with QUIC the best option for encrypted communication on the Internet.

9.Protecting the Decentralized Future: An Exploration of Common Blockchain Attacks and their Countermeasures

Authors:Bilash Saha, Md Mehedi Hasan, Nafisa Anjum, Sharaban Tahora, Aiasha Siddika, Hossain Shahriar

Abstract: Blockchain technology transformed the digital sphere by providing a transparent, secure, and decentralized platform for data security across a range of industries, including cryptocurrencies and supply chain management. Blockchain's integrity and dependability have been jeopardized by the rising number of security threats, which have attracted cybercriminals as a target. By summarizing suggested fixes, this research aims to offer a thorough analysis of mitigating blockchain attacks. The objectives of the paper include identifying weak blockchain attacks, evaluating various solutions, and determining how effective and effective they are at preventing these attacks. The study also highlights how crucial it is to take into account the particular needs of every blockchain application. This study provides beneficial perspectives and insights for blockchain researchers and practitioners, making it essential reading for those interested in current and future trends in blockchain security research.

10.Deep perceptual hashing algorithms with hidden dual purpose: when client-side scanning does facial recognition

Authors:Shubham Jain, Ana-Maria Cretu, Antoine Cully, Yves-Alexandre de Montjoye

Abstract: End-to-end encryption (E2EE) provides strong technical protections to individuals from interferences. Governments and law enforcement agencies around the world have however raised concerns that E2EE also allows illegal content to be shared undetected. Client-side scanning (CSS), using perceptual hashing (PH) to detect known illegal content before it is shared, is seen as a promising solution to prevent the diffusion of illegal content while preserving encryption. While these proposals raise strong privacy concerns, proponents of the solutions have argued that the risk is limited as the technology has a limited scope: detecting known illegal content. In this paper, we show that modern perceptual hashing algorithms are actually fairly flexible pieces of technology and that this flexibility could be used by an adversary to add a secondary hidden feature to a client-side scanning system. More specifically, we show that an adversary providing the PH algorithm can ``hide" a secondary purpose of face recognition of a target individual alongside its primary purpose of image copy detection. We first propose a procedure to train a dual-purpose deep perceptual hashing model by jointly optimizing for both the image copy detection and the targeted facial recognition task. Second, we extensively evaluate our dual-purpose model and show it to be able to reliably identify a target individual 67% of the time while not impacting its performance at detecting illegal content. We also show that our model is neither a general face detection nor a facial recognition model, allowing its secondary purpose to be hidden. Finally, we show that the secondary purpose can be enabled by adding a single illegal looking image to the database. Taken together, our results raise concerns that a deep perceptual hashing-based CSS system could turn billions of user devices into tools to locate targeted individuals.