arXiv daily

Cryptography and Security (cs.CR)

Thu, 17 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.An Effective Deep Learning Based Multi-Class Classification of DoS and DDoS Attack Detection

Authors:Arun Kumar Silivery, Kovvur Ram Mohan Rao, L K Suresh Kumar

Abstract: In the past few years, cybersecurity is becoming very important due to the rise in internet users. The internet attacks such as Denial of service (DoS) and Distributed Denial of Service (DDoS) attacks severely harm a website or server and make them unavailable to other users. Network Monitoring and control systems have found it challenging to identify the many classes of DoS and DDoS attacks since each operates uniquely. Hence a powerful technique is required for attack detection. Traditional machine learning techniques are inefficient in handling extensive network data and cannot extract high-level features for attack detection. Therefore, an effective deep learning-based intrusion detection system is developed in this paper for DoS and DDoS attack classification. This model includes various phases and starts with the Deep Convolutional Generative Adversarial Networks (DCGAN) based technique to address the class imbalance issue in the dataset. Then a deep learning algorithm based on ResNet-50 extracts the critical features for each class in the dataset. After that, an optimized AlexNet-based classifier is implemented for detecting the attacks separately, and the essential parameters of the classifier are optimized using the Atom search optimization algorithm. The proposed approach was evaluated on benchmark datasets, CCIDS2019 and UNSW-NB15, using key classification metrics and achieved 99.37% accuracy for the UNSW-NB15 dataset and 99.33% for the CICIDS2019 dataset. The investigational results demonstrate that the suggested approach performs superior to other competitive techniques in identifying DoS and DDoS attacks.

2.Towards a Practical Defense against Adversarial Attacks on Deep Learning-based Malware Detectors via Randomized Smoothing

Authors:Daniel Gibert, Giulio Zizzo, Quan Le

Abstract: Malware detectors based on deep learning (DL) have been shown to be susceptible to malware examples that have been deliberately manipulated in order to evade detection, a.k.a. adversarial malware examples. More specifically, it has been show that deep learning detectors are vulnerable to small changes on the input file. Given this vulnerability of deep learning detectors, we propose a practical defense against adversarial malware examples inspired by randomized smoothing. In our work, instead of employing Gaussian or Laplace noise when randomizing inputs, we propose a randomized ablation-based smoothing scheme that ablates a percentage of the bytes within an executable. During training, our randomized ablation-based smoothing scheme trains a base classifier based on ablated versions of the executable files. At test time, the final classification for a given input executable is taken as the class most commonly predicted by the classifier on a set of ablated versions of the original executable. To demonstrate the suitability of our approach we have empirically evaluated the proposed ablation-based model against various state-of-the-art evasion attacks on the BODMAS dataset. Results show greater robustness and generalization capabilities to adversarial malware examples in comparison to a non-smoothed classifier.

3.Smart Bulbs can be Hacked to Hack into your Household

Authors:Davide Bonaventura, Sergio Esposito, Giampaolo Bella

Abstract: The IoT is getting more and more pervasive. Even the simplest devices, such as a light bulb or an electrical plug, are made "smart" and controllable by our smartphone. This paper describes the findings obtained by applying the PETIoT kill chain to conduct a Vulnerability Assessment and Penetration Testing session on a smart bulb, the Tapo L530E by Tp-Link, currently best seller on Amazon Italy. We found that four vulnerabilities affect the bulb, two of High severity and two of Medium severity according to the CVSS v3.1 scoring system. In short, authentication is not well accounted for and confidentiality is insufficiently achieved by the implemented cryptographic measures. In consequence, an attacker who is nearby the bulb can operate at will not just the bulb but all devices of the Tapo family that the user may have on her Tapo account. Moreover, the attacker can learn the victim's Wi-Fi password, thereby escalating his malicious potential considerably. The paper terminates with an outline of possible fixes.

4.Watch Out! Smartwatches as criminal tool and digital forensic investigations

Authors:Seungjae Jeon, Jaehyun Chung, Doowon Jeong

Abstract: In the rapidly advancing technological landscape, smartwatches have materialized as multifunctional devices integral to our daily routines. Smartwatches store a substantial amount of personal information, potentially serving as repositories of digital evidence. Thus, digital forensic researchers have devoted considerable effort to exploring smartwatch forensic techniques. However, it has been observed that prior studies have primarily treated smartwatches as mere storage mediums for digital evidence, neglecting their potential role in criminal activities. This paper presents the information leakage perpetrated through smartwatches. We represent crime scenarios in an environment where smartphones are not available, considering that the perception that smartphones can be used as tools for criminal behavior prevails in many organizations, while the potential of similar-use smartwatches is often overlooked. We detail mechanisms for information leakage via file transfer and camera control using smartwatches. Additionally, we present methods to investigate each crime incident through smartwatch forensics. Finally, we describe the limitations of post-incident responses and propose proactive measures to prepare for potential crimes involving smartwatches. Keywords: Information Leakage, Smartwatch Forensics, Android Forensics, Mobile Device Management, Security Policy

5.That Doesn't Go There: Attacks on Shared State in Multi-User Augmented Reality Applications

Authors:Carter Slocum, Yicheng Zhang, Erfan Shayegani, Pedram Zaree, Nael Abu-Ghazaleh, Jiasi Chen

Abstract: Augmented Reality (AR) is expected to become a pervasive component in enabling shared virtual experiences. In order to facilitate collaboration among multiple users, it is crucial for multi-user AR applications to establish a consensus on the "shared state" of the virtual world and its augmentations, through which they interact within augmented reality spaces. Current methods to create and access shared state collect sensor data from devices (e.g., camera images), process them, and integrate them into the shared state. However, this process introduces new vulnerabilities and opportunities for attacks. Maliciously writing false data to "poison" the shared state is a major concern for the security of the downstream victims that depend on it. Another type of vulnerability arises when reading the shared state; by providing false inputs, an attacker can view hologram augmentations at locations they are not allowed to access. In this work, we demonstrate a series of novel attacks on multiple AR frameworks with shared states, focusing on three publicly-accessible frameworks. We show that these frameworks, while using different underlying implementations, scopes, and mechanisms to read from and write to the shared state, have shared vulnerability to a unified threat model. Our evaluation of these state-of-art AR applications demonstrates reliable attacks both on updating and accessing shared state across the different systems. To defend against such threats, we discuss a number of potential mitigation strategies that can help enhance the security of multi-user AR applications.

6.Forensic Data Analytics for Anomaly Detection in Evolving Networks

Authors:Li Yang, Abdallah Moubayed, Abdallah Shami, Amine Boukhtouta, Parisa Heidari, Stere Preda, Richard Brunner, Daniel Migault, Adel Larabi

Abstract: In the prevailing convergence of traditional infrastructure-based deployment (i.e., Telco and industry operational networks) towards evolving deployments enabled by 5G and virtualization, there is a keen interest in elaborating effective security controls to protect these deployments in-depth. By considering key enabling technologies like 5G and virtualization, evolving networks are democratized, facilitating the establishment of point presences integrating different business models ranging from media, dynamic web content, gaming, and a plethora of IoT use cases. Despite the increasing services provided by evolving networks, many cybercrimes and attacks have been launched in evolving networks to perform malicious activities. Due to the limitations of traditional security artifacts (e.g., firewalls and intrusion detection systems), the research on digital forensic data analytics has attracted more attention. Digital forensic analytics enables people to derive detailed information and comprehensive conclusions from different perspectives of cybercrimes to assist in convicting criminals and preventing future crimes. This chapter presents a digital analytics framework for network anomaly detection, including multi-perspective feature engineering, unsupervised anomaly detection, and comprehensive result correction procedures. Experiments on real-world evolving network data show the effectiveness of the proposed forensic data analytics solution.

7.RatGPT: Turning online LLMs into Proxies for Malware Attacks

Authors:Mika Beckerich, Laura Plein, Sergio Coronado

Abstract: The evolution of Generative AI and the capabilities of the newly released Large Language Models (LLMs) open new opportunities in software engineering. However, they also lead to new challenges in cybersecurity. Recently, researchers have shown the possibilities of using LLMs such as ChatGPT to generate malicious content that can directly be exploited or guide inexperienced hackers to weaponize tools and code. Those studies covered scenarios that still require the attacker in the middle of the loop. In this study, we leverage openly available plugins and use an LLM as proxy between the attacker and the victim. We deliver a proof-of-concept where ChatGPT is used for the dissemination of malicious software while evading detection, alongside establishing the communication to a command and control (C2) server to receive commands to interact with a victim's system. Finally, we present the general approach as well as essential elements in order to stay undetected and make the attack a success. This proof-of-concept highlights significant cybersecurity issues with openly available plugins and LLMs, which require the development of security guidelines, controls, and mitigation strategies.