arXiv daily

Cryptography and Security (cs.CR)

Wed, 30 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Cryptanalysis of a Cayley Hash Function Based on Affine Maps

Authors:Bianca Sosnovski

Abstract: Cayley hash functions are cryptographic hashes constructed from Cayley graphs of groups. The hash function proposed by Shpilrain and Sosnovski (2016), based on linear functions over a finite field, was proven insecure. This paper shows that the proposal by Ghaffari and Mostaghim (2018) that uses the Shpilrain and Sosnovski's hash in its construction is also insecure. We demonstrate its security vulnerability by constructing collisions.

2.Split Without a Leak: Reducing Privacy Leakage in Split Learning

Authors:Khoa Nguyen, Tanveer Khan, Antonis Michalas

Abstract: The popularity of Deep Learning (DL) makes the privacy of sensitive data more imperative than ever. As a result, various privacy-preserving techniques have been implemented to preserve user data privacy in DL. Among various privacy-preserving techniques, collaborative learning techniques, such as Split Learning (SL) have been utilized to accelerate the learning and prediction process. Initially, SL was considered a promising approach to data privacy. However, subsequent research has demonstrated that SL is susceptible to many types of attacks and, therefore, it cannot serve as a privacy-preserving technique. Meanwhile, countermeasures using a combination of SL and encryption have also been introduced to achieve privacy-preserving deep learning. In this work, we propose a hybrid approach using SL and Homomorphic Encryption (HE). The idea behind it is that the client encrypts the activation map (the output of the split layer between the client and the server) before sending it to the server. Hence, during both forward and backward propagation, the server cannot reconstruct the client's input data from the intermediate activation map. This improvement is important as it reduces privacy leakage compared to other SL-based works, where the server can gain valuable information about the client's input. In addition, on the MIT-BIH dataset, our proposed hybrid approach using SL and HE yields faster training time (about 6 times) and significantly reduced communication overhead (almost 160 times) compared to other HE-based approaches, thereby offering improved privacy protection for sensitive data in DL.

3.How does post-quantum cryptography affect Central Bank Digital Currency?

Authors:Lars Hupel, Makan Rafiee

Abstract: Central Bank Digital Currency (CBDC) is an emerging trend in digital payments, with the vast majority of central banks around the world researching, piloting, or even operating a digital version of cash. While design choices differ broadly, such as accounts vs. tokens, the wallets are generally protected through cryptographic algorithms that safeguard against double spending and ensure non-repudiation. But with the advent of quantum computing, these algorithms are threatened by new attack vectors. To better understand those threats, we conducted a study of typical assets in a CBDC system, describe which ones are most amenable to post-quantum cryptography, and propose an upgrade strategy.

4.Securing Blockchain Systems: A Novel Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts

Authors:Tran Viet Khoa, Do Hai Son, Chi-Hieu Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Nguyen Linh Trung, Tran Thi Thuy Quynh, Trong-Minh Hoang, Nguyen Viet Ha, Eryk Dutkiewicz

Abstract: With the escalating prevalence of malicious activities exploiting vulnerabilities in blockchain systems, there is an urgent requirement for robust attack detection mechanisms. To address this challenge, this paper presents a novel collaborative learning framework designed to detect attacks in blockchain transactions and smart contracts by analyzing transaction features. Our framework exhibits the capability to classify various types of blockchain attacks, including intricate attacks at the machine code level (e.g., injecting malicious codes to withdraw coins from users unlawfully), which typically necessitate significant time and security expertise to detect. To achieve that, the proposed framework incorporates a unique tool that transforms transaction features into visual representations, facilitating efficient analysis and classification of low-level machine codes. Furthermore, we propose a customized collaborative learning model to enable real-time detection of diverse attack types at distributed mining nodes. In order to create a comprehensive dataset, we deploy a pilot system based on a private Ethereum network and conduct multiple attack scenarios. To the best of our knowledge, our dataset is the most comprehensive and diverse collection of transactions and smart contracts synthesized in a laboratory for cyberattack detection in blockchain systems. Our framework achieves a detection accuracy of approximately 94\% through extensive simulations and real-time experiments with a throughput of over 1,100 transactions per second. These compelling results validate the efficacy of our framework and showcase its adaptability in addressing real-world cyberattack scenarios.

5.Exploring Cybercriminal Activities, Behaviors and Profiles

Authors:Maria Bada, Jason R. C. Nurse

Abstract: While modern society benefits from a range of technological advancements, it also is exposed to an ever-increasing set of cybersecurity threats. These affect all areas of life including business, government, and individuals. To complement technology solutions to this problem, it is crucial to understand more about cybercriminal perpetrators themselves, their use of technology, psychological aspects, and profiles. This is a topic that has received little socio-technical research emphasis in the technology community, has few concrete research findings, and is thus a prime area for development. The aim of this article is to explore cybercriminal activities and behavior from a psychology and human aspects perspective, through a series of notable case studies. We examine motivations, psychological and other interdisciplinary concepts as they may impact/influence cybercriminal activities. We expect this paper to be of value and particularly insightful for those studying technology, psychology, and criminology, with a focus on cybersecurity and cybercrime.

6.Conti Inc.: Understanding the Internal Discussions of a large Ransomware-as-a-Service Operator with Machine Learning

Authors:Estelle Ruellan, Masarah Paquet-Clouston, Sebastian Garcia

Abstract: Ransomware-as-a-service (RaaS) is increasing the scale and complexity of ransomware attacks. Understanding the internal operations behind RaaS has been a challenge due to the illegality of such activities. The recent chat leak of the Conti RaaS operator, one of the most infamous ransomware operators on the international scene, offers a key opportunity to better understand the inner workings of such organizations. This paper analyzes the main topic discussions in the Conti chat leak using machine learning techniques such as Natural Language Processing (NLP) and Latent Dirichlet Allocation (LDA), as well as visualization strategies. Five discussion topics are found: 1) Business, 2) Technical, 3) Internal tasking/Management, 4) Malware, and 5) Customer Service/Problem Solving. Moreover, the distribution of topics among Conti members shows that only 4% of individuals have specialized discussions while almost all individuals (96%) are all-rounders, meaning that their discussions revolve around the five topics. The results also indicate that a significant proportion of Conti discussions are non-tech related. This study thus highlights that running such large RaaS operations requires a workforce skilled beyond technical abilities, with individuals involved in various tasks, from management to customer service or problem solving. The discussion topics also show that the organization behind the Conti RaaS oper5086933ator shares similarities with a large firm. We conclude that, although RaaS represents an example of specialization in the cybercrime industry, only a few members are specialized in one topic, while the rest runs and coordinates the RaaS operation.