arXiv daily

Optics (physics.optics)

Fri, 01 Sep 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Design and Numerical Analysis of Hyperbolic Metamaterial Based Ultrasensitive E. Coli Sensor

Authors:Dip Sarker, Ahmed Zubair

Abstract: We proposed an extremely sensitive \textit{E. Coli} sensor based on a hyperbolic metamaterial structure combining ultra-thin Ag-Al$_2$O$_3$ layers to minimize metallic optical loss. The principle relied on detecting the change in the resonance wavelength due to the interaction of bacteria with the surrounding aqueous environment by utilizing the finite-difference time-domain numerical technique. Our proposed hyperbolic metamaterial \textit{E. Coli} sensor operated in the range from visible to near-infrared wavelengths exhibiting strong bulk plasmon polaritons at the hyperbolic regime ($\lambda \geq$ 460 nm). An anisotropic hyperbolic range was obtained theoretically by solving the effective medium theory. An outstanding sensitivity of 9000 nm per bacteria was achieved for a bulk plasmon-polariton mode. The hyperbolic metamaterial was the origin of obtaining such extremely high sensitivity; no bulk plasmon polaritons were found without hyperbolic metamaterial. We analyzed the effect of different shapes in two-dimensional Ag differential grating on sensing performance. Additionally, we compared the performance parameters of our proposed \textit{E. Coli} sensor with recently demonstrated sensors. Our proposed hyperbolic metamaterial structure has the potential as a highly sensitive \textit{E. Coli} sensor operating in a wide range of wavelengths for label-free detection.

2.Robust Super-Resolution Imaging Based on a Ring Core Fiber with Orbital Angular Momentum

Authors:Zheyu Wu, Ran Gao, Sitong Zhou, Fei Wang, Zhipei Li, Huan Chang, Dong Guo, Xiangjun Xin, Qi Zhang, Feng Tian, Qiang Wu

Abstract: Single fiber imaging technology offers unique insights for research and inspection in difficult to reach and narrow spaces. In particular, ultra-compact multimode fiber (MMF) imaging, has received increasing interest over the past decade. However, MMF imaging will be seriously distorted when subjected to dynamic perturbations due to time-varying mode coupling, and the imaging of space objects via Gaussian beam will be relatively degraded at the edge due to insufficient contrast. Here, a robust super-resolution imaging method based on a ring core fiber (RCF) with orbital angular momentum (OAM) has been proposed and experimentally demonstrated. The OAM modes propagating in the RCF form a series of weakly-coupled mode groups, making our imaging system robust to external perturbations. In addition, a spiral phase plate is used as a vortex filter to produce OAM for edge enhancement, thus improving the image resolution. Furthermore, a few-shot U-Transformer neural network is proposed to enhance the resilience of the developed RCF-OAM imaging system against environmental perturbations. Finally, the developed RCF-OAM imaging system achieves biological image transmission, demonstrating the practicality of our scheme. This pioneering RCF OAM imaging system may have broad applications, potentially revolutionising fields such as biological imaging and industrial non-destructive testing.

3.Quantum Walk Laser

Authors:Ina Heckelmann, Mathieu Bertrand, Alexander Dikopoltsev, Mattias Beck, Giacomo Scalari, Jérôme Faist

Abstract: Synthetic lattices in photonics enable the exploration of light states in new dimensions, transcending phenomena common only to physical space. We propose and demonstrate a Quantum Walk Laser in synthetic frequency space formed by externally modulating a ring-shaped semiconductor laser with ultrafast recovery times. In this device, the initially ballistic quantum walk does not dissipate into low supermode states of the synthetic lattice; instead, thanks to the fast-gain nonlinearity of our quantum cascade laser active material, the state stabilizes in a broad frequency comb, unlocking the full potential of the lattice. This device produces a low-noise, nearly-flat broadband comb (reaching 100 cm$^{-1}$ bandwidth), well predicted by our models. The proposed Quantum Walk Laser offers a promising platform to generate broadband, tunable and stable frequency combs.

4.Periodic patterns for resolution limit characterization of correlation plenoptic imaging

Authors:Francesco Scattarella, Gianlorenzo Massaro, Bohumil Stoklasa, Milena D'Angelo, Francesco V. Pepe

Abstract: The measurement of the spatio-temporal correlations of light provides an interesting tool to overcome the traditional limitations of standard imaging, such as the strong trade-off between spatial resolution and depth of field. In particular, using correlation plenoptic imaging, one can detect both the spatial distribution and the direction of light in a scene, pushing both resolution and depth of field to the fundamental limit imposed by wave-optics. This allows one to perform refocusing of different axial planes and three-dimensional reconstruction without any spatial scanning. In the present work, we investigate the resolution limit in a particular correlation plenoptic imaging scheme, by considering periodic test patterns, which provide, through analytical results, a deeper insight in the resolution properties of this second-order imaging technique, also in comparison with standard imaging.