arXiv daily

Optics (physics.optics)

Wed, 07 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Monolithic Integration of Mid-Infrared Quantum Cascade Lasers and Frequency Combs with Passive Waveguides

Authors:Ruijun Wang, Philipp Täschler, Zhixin Wang, Emilio Gini, Mattias Beck, Jérôme Faist

Abstract: Mid-infrared semiconductor lasers in photonic integrated circuits are of considerable interest for a variety of industrial, environmental, and medical applications. However, photonic integration technologies in the mid-infrared lag far behind the near-infrared range. Here we present the monolithic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides via butt-coupling. The passive waveguide losses are experimentally evaluated to be only 1.2 +- 0.3 dB/cm, with negligible butt-coupling losses. We demonstrate continuous-wave lasing at room temperature of these active-to-passive waveguide coupled devices. Moreover, we report a frequency comb operation paving the way toward on-chip, mid-infrared, dual-comb sensors.

2.Surface Saturation Current Densities of Perovskite Thin Films from Suns-Photoluminescence Quantum Yield Measurements

Authors:Robert Lee Chin, Arman Mahboubi Soufiani, Paul Fassl, Jianghui Zheng, Eunyoung Choi, Anita Ho-Baillie, Ulrich Paetzold, Thorsten Trupke, Ziv Hameiri

Abstract: We present a simple, yet powerful analysis of Suns-photoluminescence quantum yield measurements that can be used to determine the surface saturation current densities of thin film semiconductors. We apply the method to state-of-the-art polycrystalline perovskite thin films of varying absorber thickness. We show that the non-radiative bimolecular recombination in these samples originates from the surfaces. To the best of our knowledge, this is the first study to demonstrate and quantify non-linear (bimolecular) surface recombination in perovskite thin films.

3.Experimental measurements of the transfer function of a nonlinear optical loop mirror

Authors:Alix Malfondet, Alexandre Parriaux, Patrice Tchofo-Dinda, Guy Millot

Abstract: Measurement of the average values of the input and output powers of a device can give insight into the transfer function (TF) of that device, but this approach usually hides the real impact of certain propagation phenomena. However, to the best of our knowledge, measurements of the TF of nonlinear optical loop mirrors have always been carried out using this approach [1-3], which may lead to underestimating the impact of dispersive and nonlinear effects. Here we present the experimental measurement of the TF of a nonlinear optical loop mirror (NOLM), made from the experimental measurements of the input and output intensity profiles of the device, using a frequency-resolved optical gating (FROG) technique [4-6]. Our approach clearly highlights the impact of dispersion effects and Kerr nonlinearity on the NOLM's TF.

4.Microdisk modulator-assisted optical nonlinear activation functions for photonic neural networks

Authors:Bin Wang, Weizhen Yu, Jinpeng Duan, Shuwen Yang, Zhenyu Zhao, Shuang Zheng, Weifeng Zhang

Abstract: On-chip implementation of optical nonlinear activation functions (NAFs) is essential for realizing large-scale photonic neural chips. To implement different neural processing and machine learning tasks with optimal performances, different NAFs are explored with the use of different devices. From the perspective of on-chip integration and reconfigurability of photonic neural network (PNN), it is highly preferred that a single compact device can fulfill multiple NAFs. Here, we propose and experimentally demonstrate a compact high-speed microdisk modulator to realize multiple NAFs. The fabricated microdisk modulator has an add-drop configuration in which a lateral PN junction is incorporated for tuning. Based on high-speed nonlinear electrical-optical (E-O) effect, multiple NAFs are realized by electrically controlling free-carrier injection. Thanks to its strong optical confinement of the disk cavity, all-optical thermo-optic (TO) nonlinear effect can also be leveraged to realize other four different NAFs, which is difficult to be realized with the use of electrical-optical effect. With the use of the realized nonlinear activation function, a convolutional neural network (CNN) is studied to perform handwritten digit classification task, and an accuracy as large as 98% is demonstrated, which verifies the effectiveness of the use of the high-speed microdisk modulator to realize the NAFs. Thanks to its compact footprint and strong electrical-optical or all-optical effects, the microdisk modulator features multiple NAFs, which could serve as a flexible nonlinear unit for large-scale PNNs.

5.Gain assisted controllable fast light generation in cavity magnomechanics

Authors:Sanket Das, Subhadeep Chakraborty, Tarak N. Dey

Abstract: We study the controllable output field generation from a cavity magnomechanical resonator system that consists of two coupled microwave resonators. The first cavity interacts with a ferromagnetic yttrium iron garnet (YIG) sphere providing the magnon-photon coupling. Under passive cavities configuration, the system displays high absorption, prohibiting output transmission even though the dispersive response is anamolous. We replace the second passive cavity with an active one to overcome high absorption, producing an effective gain in the system. We show that the deformation of the YIG sphere retains the anomalous dispersion. Further, tuning the exchange interaction strength between the two resonators leads to the system's effective gain and dispersive response. As a result, the advancement associated with the amplification of the probe pulse can be controlled in the close vicinity of the magnomechanical resonance. Furthermore, we find the existence of an upper bound for the intensity amplification and the advancement of the probe pulse that comes from the stability condition. These findings may find potential applications for controlling light propagation in cavity magnomechanics.

6.Efficient and scalable scheme for overcoming the pulse energy bottleneck of single-cycle laser sources

Authors:Lu Xu, Eiji J. Takahashi

Abstract: We propose a novel scheme called advanced dual-chirped optical parametric amplification (DC-OPA) that employs two kinds of nonlinear crystals (BiB$_3$O$_6$ and MgO-doped lithium niobate) to overcome the bottleneck of pulse energy scalability for single-cycle mid-infrared (MIR) laser pulses. In experiments, the advanced DC-OPA scheme achieved carrier-to-envelope phase-stable MIR laser pulses for a bandwidth of over one octave (1.4-3.1 $\mu$m) with an output pulse energy of 53 mJ. The pulse duration was compressed to 8.58 fs, which corresponds to 1.05 cycles with a central wavelength of 2.44 $\mu$m and peak power of 6 TW. To our knowledge, the obtained values for the pulse energy and peak power are the highest achieved for optical parametric amplification of single-cycle MIR laser pulses. Thanks to the energy scalability of the advanced DC-OPA scheme, it is potentially applicable to multi-TW sub-cycle laser pulses.

7.Loss-induced Floquet non-Hermitian skin effect

Authors:Yaohua Li, Cuicui Lu, Shuang Zhang, Yong-Chun Liu

Abstract: Non-Hermitian topological systems have attracted lots of interest due to their unique topological properties when the non-Hermitian skin effect (NHSE) appears. However, the experimental realization of NHSE conventionally requires non-reciprocal couplings, which are compatible with limited systems. Here we propose a mechanism of loss-induced Floquet NHSE, where the loss provides the basic source of non-Hermicity and the Floquet engineering brings about the Floquet-induced complex next-nearest-neighbor couplings. We also extend the generalized Brillouin zone theory to nonequilibrium systems to describe the Floquet NHSE. Furthermore, we show that this mechanism can realize the second-order NHSE when generalized to two-dimensional systems. Our proposal can be realized in photonic lattices with helical waveguides and other related systems, which opens the door for the study of topological phases in Floquet non-Hermitian systems.

8.High-quality amorphous Silicon Carbide for hybrid photonic integration at low temperature

Authors:Bruno Lopez-Rodriguez, Roald Van Der Kolk, Samarth Aggarwal, Naresh Sharma, Zizheng Li, Daniel Van Der Plaats, Thomas Scholte, Jin Chang, Silvania F. Pereira, Simon Groeblacher, Harish Bhaskaran, Iman Esmaeil Zadeh Zadeh

Abstract: Integrated photonic platforms have proliferated in recent years, each demonstrating its own unique strengths and shortcomings. However, given the processing incompatibilities of different platforms, a formidable challenge in the field of integrated photonics still remains for combining the strength of different optical materials in one hybrid integrated platform. Silicon carbide is a material of great interest because of its high refractive index, strong second and third-order non-linearities and broad transparecy window in the visible and near infrared. However, integrating SiC has been difficult, and current approaches rely on transfer bonding techniques, that are time consuming, expensive and lacking precision in layer thickness. Here, we demonstrate high index Amorphous Silicon Carbide (a-SiC) films deposited at 150$^{\circ}$C and verify the high performance of the platform by fabricating standard photonic waveguides and ring resonators. The intrinsic quality factors of single-mode ring resonators were in the range of $Q_{int} = (4.7-5.7)\times10^5$ corresponding to optical losses between 0.78-1.06 dB/cm. We then demonstrate the potential of this platform for future heterogeneous integration with ultralow loss thin SiN and LiNbO$_3$ platforms.

9.Integrated Photonic Encoder for Terapixel Image Processing

Authors:Xiao Wang, Brandon Redding, Nicholas Karl, Christopher Long, Zheyuan Zhu, Shuo Pang, David Brady, Raktim Sarma

Abstract: Modern lens designs are capable of resolving >10 gigapixels, while advances in camera frame-rate and hyperspectral imaging have made Terapixel/s data acquisition a real possibility. The main bottlenecks preventing such high data-rate systems are power consumption and data storage. In this work, we show that analog photonic encoders could address this challenge, enabling high-speed image compression using orders-of-magnitude lower power than digital electronics. Our approach relies on a silicon-photonics front-end to compress raw image data, foregoing energy-intensive image conditioning and reducing data storage requirements. The compression scheme uses a passive disordered photonic structure to perform kernel-type random projections of the raw image data with minimal power consumption and low latency. A back-end neural network can then reconstruct the original images with structural similarity exceeding 90%. This scheme has the potential to process Terapixel/s data streams using less than 100 fJ/pixel, providing a path to ultra-high-resolution data and image acquisition systems.

10.Dielectric breakdown and sub-wavelength patterning of monolayer hexagonal boron nitride using femtosecond pulses

Authors:Sabeeh Irfan Ahmad, Emmanuel Sarpong, Arpit Dave, Hsin-Yu Yao, Joel M. Solomon, Jing-Kai Jiang, Chih-Wei Luo, Wen-Hao Chang, Tsing-Hua Her

Abstract: Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for many applications in photonics. Although its linear and nonlinear optical properties have been extensively studied, its interaction with high-intensity laser pulses, which is important for high-harmonic generation, fabricating quantum emitters, and maskless patterning of hBN, has not been investigated. Here we report the first study of dielectric breakdown in hBN monolayers induced by single femtosecond laser pulses. We show that hBN has the highest breakdown threshold among all existing 2D materials. This enables us to observe clearly for the first time a linear dependence of breakdown threshold on the bandgap energy for 2D materials, demonstrating such a linear dependency is a universal scaling law independent of the dimensionality. We also observe counter-intuitively that hBN, which has a larger bandgap and mechanical strength than quartz, has a lower breakdown threshold. This implies carrier generation in hBN is much more efficient. Furthermore, we demonstrate the clean removal of hBN without damage to the surrounding hBN film or the substrate, indicating that hBN is optically very robust. The ablated features are shown to possess very small edge roughness, which is attributed to its ultrahigh fracture toughness. Finally, we demonstrate femtosecond laser patterning of hBN with sub-wavelength resolution, including an isolated stripe width of 200 nm. Our work advances the knowledge of light-hBN interaction in the strong field regime and firmly establishes femtosecond lasers as novel and promising tools for one-step deterministic patterning of hBN monolayers.

11.Helicity-dependent optical control of the magnetization state emerging from the Landau-Lifshitz-Gilbert equation

Authors:Benjamin Assouline, Amir Capua

Abstract: It is well known that the Gilbert relaxation time of a magnetic moment scales inversely with the magnitude of the externally applied field, H, and the Gilbert damping, {\alpha}. Therefore, in ultrashort optical pulses, where H can temporarily be extremely large, the Gilbert relaxation time can momentarily be extremely short, reaching even picosecond timescales. Here we show that for typical ultrashort pulses, the optical control of the magnetization emerges by merely considering the optical magnetic field in the Landau-Lifshitz-Gilbert (LLG) equation. Surprisingly, when circularly polarized optical pulses are introduced to the LLG equation, an optically induced helicity-dependent torque results. We find that the strength of the interaction is determined by {\eta}={\alpha}{\gamma}H/f_opt, where f_opt and {\gamma} are the optical frequency and gyromagnetic ratio. Our results illustrate the generality of the LLG equation to the optical limit and the pivotal role of the Gilbert damping in the general interaction between optical magnetic fields and spins in solids.