arXiv daily

Optics (physics.optics)

Wed, 30 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Optical Linearization of Silicon Photonic Ring-Assisted Mach-Zehnder Modulator

Authors:Md Jubayer Shawon, Vishal Saxena

Abstract: In high-performance RF photonic systems, the Electro-Optic (EO) modulators play a critical role as a key component, requiring low SWaP-C and high linearity. While traditional lithium niobate (LiNbO$_3$) Mach-Zehnder Modulators (MZMs) have been extensively utilized due to their superior linearity, silicon-based EO modulators have lagged behind in achieving comparable performance. This paper presents an experimental demonstration of a Ring Assisted Mach Zehnder Modulator (RAMZM) fabricated using a silicon photonic foundry process, addressing the performance gap. The proposed RAMZM modulator enables linearization in the optical domain and can be dynamically reconfigured to linearize around user-specified center frequency and bias conditions, even in the presence of process variations and thermal crosstalk. An automatic reconfiguration algorithm, empowered by Digital-to-Analog Converters (DACs), Analog-to-Digital Converters (ADCs), Trans-Impedance Amplifiers (TIAs), and a digital configuration engine, is developed to achieve linearization, resulting in a spurious-free dynamic range (SFDR) exceeding 113 dB.Hz$^{2/3}$. Furthermore, a biasing scheme is introduced for RAMZMs, significantly enhancing the modulation slope efficiency, which in turn yields a tone gain of over 13 dB compared to its standard operation. This reconfigurable electro-optic modulator can be seamlessly integrated into integrated RF photonic System-on-Chips (SoCs), leveraging the advantages of integration and cost-effectiveness.

2.Liquid-assisted laser nanotexturing of silicon: onset of hydrodynamic processes regulated by laser-induced periodic surface structures

Authors:Yulia Borodaenko, Dmitriy Pavlov, Artem Cherepakhin, Eugeny Mitsai, Andrei Pilnik, Sergey Syubaev, Stanislav O. Gurbatov, Evgeny Modin, Aleksey P. Porfirev, Svetlana N. Khonina, Aleksandr V. Shevlyagin, Evgeny L. Gurevich, Aleksandr A. Kuchmizhak

Abstract: Here, upon systematic studies of femtosecond-laser processing of monocrystalline Si in oxidation-preventing methanol, we showed that the electromagnetic processes dominating at initial steps of the progressive morphology evolution define the onset of the hydrodynamic processes and resulting morphology upon subsequent multi-pulse exposure. In particular, under promoted exposure quasi-regular subwavelength laser-induced periodic surface structures (LIPSSs) were justified to evolve through the template-assisted development of the Rayleigh-Plateau hydrodynamic instability in the molten ridges forming quasi-regular surface patterns with a supra-wavelength periodicity and preferential alignment along polarization direction of the incident light. Subsequent exposure promotes fusion-assisted morphology rearrangement resulting in a spiky surface with a random orientation, yet constant inter-structure distance correlated with initial LIPSS periodicity. Along with the insight onto the physical picture driving the morphology evolution and supra-wavelength nanostructure formation, our experiments also demonstrated that the resulting quasi-regular and random spiky morphology can be tailored by the intensity/polarization distribution of the incident laser beam allowing on-demand surface nanotexturing with diverse hierarchical surface morphologies exhibiting reduced reflectivity in the visible and shortwave IR spectral ranges. Finally, we highlighted the practical attractiveness of the suggested approach for improving near-IR photoresponse and expanding operation spectral range of vertical p-n junction Si photo-detector operating under room temperature and zero-bias conditions via single-step annealing-free laser nanopatterning of its surface.

3.Label-free image scanning microscopy for kHz super-resolution imaging and single particle tracking

Authors:Duc-Minh Ta XLIM-PHOT, Alberto Aguilar XLIM-PHOT, Pierre Bon XLIM-PHOT

Abstract: We report the modification of a label-free image scanning microscope (ISM) to perform asynchronous 2D imaging at 24kHz while keeping the lateral resolution gain and background rejection of a regular label-free ISM setup. Our method uses a resonant mirror oscillating at 12kHz for one-direction scanning and a chromatic line for instantaneous scanning in the other direction. We adapt optical photon reassignment in this scanning regime to perform fully optical super-resolution imaging. We exploit the kHz imaging capabilities of this confocal imaging system for single nanoparticle tracking down to 20nm for gold and 50nm for silica particles as well as imaging freely moving Lactobacillus with improved resolution.

4.Frequency-comb-linearized, widely tunable lasers for coherent ranging

Authors:Baoqi Shi, Yi-Han Luo, Wei Sun, Yue Hu, Jinbao Long, Xue Bai, Anting Wang, Junqiu Liu

Abstract: Tunable lasers, with the ability to continuously adjust their emission wavelengths, have found widespread applications across various fields such as biomedical imaging, coherent ranging, optical communications and spectroscopy. In these applications, a wide chirp range is advantageous for large spectral coverage and high frequency resolution. Besides, the frequency accuracy and precision also depend critically on the chirp linearity of the laser. While extensive efforts have been made on the development of many kinds of frequency-agile, widely tunable, narrow-linewidth lasers, wideband yet precise methods to characterize and to linearize laser chirp dynamics are also demanded. Here we present an approach to characterize laser chirp dynamics using an optical frequency comb. The instantaneous laser frequency is tracked over terahertz bandwidth with 1 MHz interval. Using this approach we calibrate the chirp performance of twelve tunable lasers from Toptica, Santec, New Focus, EXFO and NKT that are commonly used in fiber optics and integrated photonics. In addition, with acquired knowledge on laser chirp dynamics, we demonstrate a simple frequency-linearization scheme that enables coherent ranging without any optical or electronic linearization units. Our approach not only presents a novel wideband, high-resolution laser spectroscopy, but is also critical for sensing applications with ever-increasing requirements on performance.

5.Photonic time-delayed reservoir computing based on series coupled microring resonators with high memory capacity

Authors:Yijia Li, Ming Li, MingYi Gao, Chang-Ling Zou, Chun-Hua Dong, Jin Lu, Yali Qin, XiaoNiu Yang, Qi Xuan, Hongliang Ren

Abstract: On-chip microring resonators (MRRs) have been proposed to construct the time-delayed reservoir computing (RC), which offers promising configurations available for computation with high scalability, high-density computing, and easy fabrication. A single MRR, however, is inadequate to supply enough memory for the computational task with diverse memory requirements. Large memory needs are met by the MRR with optical feedback waveguide, but at the expense of its large footprint. In the structure, the ultra-long optical feedback waveguide substantially limits the scalable photonic RC integrated designs. In this paper, a time-delayed RC is proposed by utilizing a silicon-based nonlinear MRR in conjunction with an array of linear MRRs. These linear MRRs possess a high quality factor, providing sufficient memory capacity for the entire system. We quantitatively analyze and assess the proposed RC structure's performance on three classical tasks with diverse memory requirements, i.e., the Narma 10, Mackey-Glass, and Santa Fe chaotic timeseries prediction tasks. The proposed system exhibits comparable performance to the MRR with an ultra-long optical feedback waveguide-based system when it comes to handling the Narma 10 task, which requires a significant memory capacity. Nevertheless, the overall length of these linear MRRs is significantly smaller, by three orders of magnitude, compared to the ultra-long feedback waveguide in the MRR with optical feedback waveguide-based system. The compactness of this structure has significant implications for the scalability and seamless integration of photonic RC.

6.Gigahertz modulation of a fully dielectric nonlocal metasurface

Authors:Alessandro Pitanti, Gaia Da Prato, Giorgio Biasiol, Alessandro Tredicucci, Simone Zanotto

Abstract: Nonlocal metasurfaces are currently emerging as advanced tools for the manipulation of electromagnetic radiation, going beyond the widely explored Huygens metasurface concept. Nonetheless, the lack of an unified approach for their fast and efficient tunability still represents a serious challenge to overcome. In this article we report on gigahertz modulation of a dielectric slab-based, nonlocal (i.e. angle-dispersive) metasurface, whose operation relies on the optomechanical coupling with a mechanical wave excited piezoelectrically by a transducer integrated on the same chip. Importantly, the metasurface region is free from any conductive material, thus eliminating optical losses, and making our device of potential interest for delicate environments such as high-power apparatuses or quantum optical systems.

7.Energy and Power requirements for alteration of the refractive index

Authors:Jacob B Khurgin

Abstract: The ability to manipulate the refractive index is a fundamental principle underlying numerous photonic devices. Various techniques exist to modify the refractive index across diverse materials, making performance comparison far from straightforward. In evaluating these methods, power consumption emerges as a key performance characteristic, alongside bandwidth and footprint. Here I undertake a comprehensive comparison of the energy and power requirements for the most well-known index change schemes. The findings reveal that while the energy per volume for index change remains within the same order of magnitude across different techniques and materials, the power consumption required to achieve switching, 100% modulation, or 100% frequency conversion can differ significantly, spanning many orders of magnitude. As it turns out, the material used has less influence on power reduction than the specific resonant or traveling wave scheme employed to enhance the interaction time between light and matter. Though this work is not intended to serve as a design guide, it does establish the limitations and trade-offs involved in index modulation, thus providing valuable insights for photonics practitioners.

8.Fully Non-Linear Neuromorphic Computing with Linear Wave Scattering

Authors:Clara C. Wanjura, Florian Marquardt

Abstract: The increasing complexity of neural networks and the energy consumption associated with training and inference create a need for alternative neuromorphic approaches, e.g. using optics. Current proposals and implementations rely on physical non-linearities or opto-electronic conversion to realise the required non-linear activation function. However, there are significant challenges with these approaches related to power levels, control, energy-efficiency, and delays. Here, we present a scheme for a neuromorphic system that relies on linear wave scattering and yet achieves non-linear processing with a high expressivity. The key idea is to inject the input via physical parameters that affect the scattering processes. Moreover, we show that gradients needed for training can be directly measured in scattering experiments. We predict classification accuracies on par with results obtained by standard artificial neural networks. Our proposal can be readily implemented with existing state-of-the-art, scalable platforms, e.g. in optics, microwave and electrical circuits, and we propose an integrated-photonics implementation based on racetrack resonators that achieves high connectivity with a minimal number of waveguide crossings.