arXiv daily

Optics (physics.optics)

Mon, 10 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Chromatic dispersion and thermal coefficients of hygroscopic liquids: 5 glycols and glycerol

Authors:Daniel Jakubczyk, Gennadiy Derkachov, Kwasi Nyandey, Sima Alikhanzadeh-Arani, Anastasiya Derkachova

Abstract: Chromatic dispersion and thermal coefficients of 6 hygroscopic liquids: ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol (propane-1,2-diol), and glycerol were measured in the range from 390 to 1070 nm for temperatures from 1 to 45degC. A modified Abbe refractometer was utilised. Special care was taken to avoid contamination of the liquids under the test with water and solid particles. The measurement uncertainties were analysed. It was noticed that (in the given range and within the available measurement accuracy) the dependence of the refractive indices on the wavelength and temperature could be considered independently. Thus, thermal coefficients were found for each wavelength used, and their weak dependence on the wavelength was recognised. Then the Sellmeier equation was fitted to the experimental results for each temperature.

2.Poles and zeros of electromagnetic quantities in photonic systems

Authors:Felix Binkowski, Fridtjof Betz, Rémi Colom, Patrice Genevet, Sven Burger

Abstract: We present an approach to investigate poles and zeros in resonant photonic systems. The theory is based on contour integration of electromagnetic quantities and allows to compute the zeros, to extract their sensitivities with respect to geometrical or other parameters, and to perform modal expansions in the complex frequency plane. The approach is demonstrated using an example from the field of nanophotonics, an illuminated metasurface, where the emergence of reflection zeros due to the underlying resonance poles is explored.

3.Pixelation with concentration-encoded effective photons for molecular optical sectioning microscopy

Authors:Geng Wang, Rishyashring R. Iyer, Janet E. Sorrells, Edita Aksamitiene, Eric J. Chaney, Carlos A. Renteria, Jaena Park, Jindou Shi, Yi Sun, Stephen A. Boppart, Haohua Tu

Abstract: Quality control in molecular optical sectioning microscopy is indispensable for transforming acquired digital images from qualitative descriptions to quantitative data. Although numerous tools, metrics, and phantoms have been developed, accurate quantitative comparisons of data from different microscopy systems with diverse acquisition conditions remains a challenge. Here, we develop a simple tool based on an absolute measurement of bulk fluorophore solutions with related Poisson photon statistics, to overcome this obstacle. Demonstrated in a prototypical multiphoton microscope, our tool unifies the unit of pixelated measurement to enable objective comparison of imaging performance across different modalities, microscopes, components/settings, and molecular targets. The application of this tool in live specimens identifies an attractive methodology for quantitative imaging, which rapidly acquires low signal-to-noise frames with either gentle illumination or low-concentration fluorescence labeling.