arXiv daily

Optics (physics.optics)

Tue, 08 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Graphene thermal infrared emitters integrated into silicon photonic waveguides

Authors:Nour Negm, Sarah Zayouna, Shayan Parhizkar, Pen-Sheng Lin, Po-Han Huang, Stephan Suckow, Stephan Schroeder, Eleonora De Luca, Floria Ottonello Briano, Arne Quellmalz, Georg S. Duesberg, Frank Niklaus, Kristinn B. Gylfason, Max C. Lemme

Abstract: Cost-efficient and easily integrable broadband mid-infrared (mid-IR) sources would significantly enhance the application space of photonic integrated circuits (PICs). Thermal incandescent sources are superior to other common mid-IR emitters based on semiconductor materials in terms of PIC compatibility, manufacturing costs, and bandwidth. Ideal thermal emitters would radiate directly into the desired modes of the PIC waveguides via near-field coupling and would be stable at very high temperatures. Graphene is a semi-metallic two-dimensional material with comparable emissivity to thin metallic thermal emitters. It allows maximum coupling into waveguides by placing it directly into their evanescent fields. Here, we demonstrate graphene mid-IR emitters integrated with photonic waveguides that couple directly into the fundamental mode of silicon waveguides designed for a wavelength of 4,2 {\mu}m relevant for CO${_2}$ sensing. High broadband emission intensity is observed at the waveguide-integrated graphene emitter. The emission at the output grating couplers confirms successful coupling into the waveguide mode. Thermal simulations predict emitter temperatures up to 1000{\deg}C, where the blackbody radiation covers the mid-IR region. A coupling efficiency {\eta}, defined as the light emitted into the waveguide divided by the total emission, of up to 68% is estimated, superior to data published for other waveguide-integrated emitters.

2.Single-shot experimental-numerical twin-image removal in lensless digital holographic microscopy

Authors:Piotr Arcab, Mikolaj Rogalski, Maciej Trusiak

Abstract: Lensless digital holographic microscopy (LDHM) offers very large field-of-view label-free imaging crucial, e.g., in high-throughput particle tracking and biomedical examination of cells and tissues. Compact layouts promote point-of-case and out-of-laboratory applications. The LDHM, based on the Gabor in-line holographic principle, is inherently spoiled by the twin-image effect, which complicates the quantitative analysis of reconstructed phase and amplitude maps. Popular family of solutions consists of numerical methods, which tend to minimize twin-image upon iterative process based on data redundancy. Additional hologram recordings are needed, and final results heavily depend on the algorithmic parameters, however. In this contribution we present a novel single-shot experimental-numerical twin-image removal technique for LDHM. It leverages two-source off-axis hologram recording deploying simple fiber splitter. Additionally, we introduce a novel phase retrieval numerical algorithm specifically tailored to the acquired holograms, that provides twin-image-free reconstruction without compromising the resolution. We quantitatively and qualitatively verify proposed method employing phase test target and cheek cells biosample. The results demonstrate that the proposed technique enables low-cost, out-of-laboratory LDHM imaging with enhanced precision, achieved through the elimination of twin-image errors. This advancement opens new avenues for more accurate technical and biomedical imaging applications using LDHM, particularly in scenarios where cost-effective and portable imaging solutions are desired.

3.Multi-level Optical Switching by Amorphization in Single- and Multi- Phase Change Material Structures

Authors:Simon Wredh, Yunzheng Wang, Joel K. W. Yang, Robert E. Simpson

Abstract: The optical properties of phase-change materials (PCM) can be tuned to multiple levels by controlling the transition between their amorphous and crystalline phases. In multi-material PCM structures, the number of discrete reflectance levels can be increased according to the number of PCM layers. However, the effect of increasing number of layers on quenching and reversibility has not been thoroughly studied. In this work, the phase-change physics and thermal conditions required for reversible switching of single and multi-material PCM switches are discussed based on thermo-optical phase-change models and laser switching experiments. By using nanosecond laser pulses, 16 different reflectance levels in Ge2Sb2Te5 are demonstrated via amorphization. Furthermore, a multi-material switch based on Ge2Sb2Te5 and GeTe with four discrete reflectance levels is experimentally proven with a reversible multi-level response. The results and design principles presented herein will impact active photonics applications that rely on dynamic multi-level operation, such as optical computing, beam steering, and next-generation display technologies.

4.Quadruplets of exceptional points and bound states in the continuum in dielectric rings

Authors:Nikolay Solodovchenko, Kirill Samusev, Mikhail Limonov

Abstract: In photonics, most systems are non-Hermitian due to radiation into open space and material losses. At the same time, non-Hermitianity defines a new physics, in particular, it gives rise to a new class of degenerations called exceptional points, where two or more resonances coalesce in both eigenvalues and eigenfunctions. The point of coalescence is a square root singularity of the energy spectrum as a function of interaction parameter. We investigated analytically and numerically the photonic properties of a narrow dielectric resonator with a rectangular cross section. It is shown that the exceptional points in such a resonator exist in pairs, and each of the points is adjacent in the parametric space to a bound state in the continuum, as a result of which quadruples of singular photonic states are formed. We also showed that the field distribution in the cross section of the ring is a characteristic fingerprint of both the bound state in the continuum and the exceptional point.

5.Non steady-state thermometry with optical diffraction tomography

Authors:Adarsh B Vasista, Bernard Ciraulo, Jaime Ortega Arroyo, Romain Quidant

Abstract: Measurement of local temperature using label-free optical methods has gained importance as a pivotal tool in both fundamental and applied research. Yet, most of these approaches are limited to steady-state measurements of planar heat sources. However, the time taken to reach steady-state is a complex function of the volume of the heated system, the size of the heat source, and the thermal conductivity of the surroundings. As such, said time can be significantly longer than expected and many relevant systems involve 3D heat sources, thus compromising reliable temperature retrieval. Here, we systematically study the thermal landscape in a model system consisting of optically excited gold nanorods (AuNRs) in a microchamber using optical diffraction tomography (ODT) thermometry. We experimentally unravel the effect of thermal conductivity of the surroundings, microchamber height, and pump pulse duration on the thermodynamics of the microchamber. We benchmark our experimental observations against 2D numerical sumulations and quantitative phase imaging (QPI) thermometry. We also demonstrate the advantage of ODT thermometry by measuring thermal landscapes inaccessible by QPI thermometry in the form of non-planar heat sources embedded in complex environments such as biological cells. Finally, we apply ODT thermometry to a complex dynamic system consisting of colloidal AuNRs in a microchamber.

6.Exceptional Point Degeneracy as Desirable Operation Point of Oscillator Array with Discrete Nonlinear Gain and Radiating Elements

Authors:Alireza Nikzamir, Filippo Capolino

Abstract: An oscillator array prefers to operate at an exceptional point of degeneracy (EPD) occurring in a waveguide periodically loaded with discrete nonlinear gain and radiating elements. The system maintains a steady-state degenerate mode of oscillation at a frequency of 3 GHz, even when the small-signal nonlinear gain values are nonuniform along the array. Contrarily to the original expectation of zero phase shift associated to the designed EPD using small-signal gain, after reaching saturation, the time domain signal in consecutive unit cells displays a $\pi$ phase shift. Hence, we demonstrate that the saturated system oscillates at a distinct EPD, associated to a $\pi$ phase shift between consecutive cells, than the one at which the system was originally designed using small-signal gain. This new EPD at which the nonlinear system is landing is associated to higher power efficiency. Finally, we demonstrate that the oscillation frequency is independent of the length of the array, contrarily to what happens ordinary oscillating systems based on one-dimensional cavity resonances. These findings may have a high impact on high-power radiating arrays with distributed active elements.

7.Chiral Optical Nano-Cavity with Atomically Thin Mirrors

Authors:Daniel G. Suárez-Forero, Ruihao Ni, Supratik Sarkar, Mahmoud Jalali Mehrabad, Erik Mechtel, Valery Simonyan, Andrey Grankin, Kenji Watanabe, Takashi Taniguchi, Suji Park, Houk Jang, Mohammad Hafezi, You Zhou

Abstract: A fundamental requirement for photonic technologies is the ability to control the confinement and propagation of light. Widely utilized platforms include two-dimensional (2D) optical microcavities in which electromagnetic waves are confined between either metallic or multi-layer dielectric distributed Bragg reflectors. However, the fabrication complexities of thick Bragg reflectors and high losses in metallic mirrors have motivated the quest for efficient and compact mirrors. Recently, 2D transition metal dichalcogenides hosting tightly bound excitons with high optical quality have emerged as promising atomically thin mirrors. In this work, we propose and experimentally demonstrate a sub-wavelength 2D nano-cavity using two atomically thin mirrors with degenerate resonances. Remarkably, we show how the excitonic nature of the mirrors enables the formation of chiral and tunable optical modes upon the application of an external magnetic field. Moreover, temperature-dependent reflectance measurements indicate robustness and tunability up to $\approx\!100$ K for the device. Our work establishes a new regime for engineering intrinsically chiral sub-wavelength optical cavities and opens avenues for realizing spin-photon interfaces and exploring chiral many-body cavity electrodynamics.

8.Vibrational coupling to quasi-bound states in the continuum under tailored coupling conditions

Authors:Keisuke Watanabe, Hemam Rachna Devi, Masanobu Iwanaga, Tadaaki Nagao

Abstract: Photonic resonance modes can be spectrally coupled to the vibrational modes of molecules in the mid-infrared regime through interactions between localized electric fields and nearby molecules. According to recent studies, radiative loss engineering of coupled systems is a promising approach for tailoring coupling conditions and enhancing the molecular signals. However, this strategy has only been realized using the localized surface plasmon resonances of metal nanostructures, which suffer from increased ohmic loss in the mid-infrared region and face serious limitations in achieving high quality (Q) factors. In this study, we adopt silicon-based metasurfaces formed on silicon-on-insulator wafers to achieve high Q factors and tune the coupling conditions between the quasi-bound states in the continuum (qBICs) and molecular vibrations. The coupling between the resonance mode and polymethyl methacrylate molecules is tailored from weak to strong coupling regimes by simply changing the structural asymmetry parameter and utilizing the intrinsically high Q factors of the qBIC modes. In addition, we identify the optimal asymmetry parameter that maximizes the enhanced molecular signal, opening a route toward realizing highly sensitive surface-enhanced infrared spectroscopy using complementary metal-oxide semiconductor compatible all-dielectric materials.

9.Decoding phase and time-dependent interferograms of high-order harmonics

Authors:C. Granados, Ching-Ling Hsiao, Marcelo F. Ciappina, Khadga J. Karki

Abstract: Interferometric measurements of high-harmonics induced by multiple laser fields in an emerging field of research that promises optimized yield of harmonics, and time and space-resolved nonlinear spectroscopy. Most of the measurements have been done by controlling the time-delay between the pulses. Here, we show that by changing one additional parameter, i.e. the phase-difference between the fields, together with the time-delay, one can, on the one hand, enhance the harmonic yield and, on the other hand, obtain in-depth information about the physical mechanisms that control the electron trajectories contributing to the high-harmonic generation. The two-dimensional interferograms obtained from such investigations can be used to find the values of time-delay and phase between the laser fields that maximize the yield of a particular harmonic. Results show that maximum yields of certain harmonics can be orders of magnitude larger than when using a single field or two fields with zero time-delay and phase difference. Our high-harmonics two-dimensional interferograms-based method paves the way for a simpler analysis of the attosecond electron dynamics in complex molecules and solids.