arXiv daily

Optics (physics.optics)

Fri, 21 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Broadband Thermal Imaging using Meta-Optics

Authors:Luocheng Huang, Zheyi Han, Anna Wirth-Singh, Vishwanath Saragadam, Saswata Mukherjee, Johannes E. Fröch, Joshua Rollag, Ricky Gibson, Joshua R. Hendrickson, Phillip W. C. Hon, Orrin Kigner, Zachary Coppens, Karl F. Böhringer, Ashok Veeraraghavan, Arka Majumdar

Abstract: Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8 - 12 $\mu$m). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.

2.Site-specific stable deterministic single photon emitters with low Huang-Rhys value in layered hexagonal boron nitride at room temperature

Authors:Amit Bhunia, Pragya Joshi, Nitesh Singh, Biswanath Chakraborty, Rajesh V Nair

Abstract: Development of stable room-temperature bright single-photon emitters using atomic defects in hexagonal-boron nitride flakes (h-BN) provides significant promises for quantum technologies. However, an outstanding challenge in h-BN is creating site-specific, stable, high emission rate single photon emitters with very low Huang-Rhys (HR) factor. Here, we discuss the photonic properties of site-specific, isolated, stable quantum emitter that emit single photons with a high emission rate and unprecedented low HR value of 0.6 at room temperature. Scanning confocal image confirms site-specific single photon emitter with a prominent zero-phonon line at ~578 nm with saturation photon counts of 105 counts/second. The second-order intensity-intensity correlation measurement shows an anti-bunching dip of ~0.25 with an emission lifetime of 2.46 ns. Low-energy electron beam irradiation and subsequent annealing are important to achieve stable single photon emitters.

3.Second-Order Coherence Across the Brillouin Lasing Threshold

Authors:E. A. Cryer-Jenkins, G. Enzian, L. Freisem, N. Moroney, J. J. Price, A. Ø. Svela, K. D. Major, M. R. Vanner

Abstract: Brillouin-Mandelstam scattering is one of the most accessible nonlinear optical phenomena and has been widely studied since its theoretical discovery one hundred years ago. The scattering mechanism is a three-wave mixing process between two optical fields and one acoustic field and has found a broad range of applications spanning microscopy to ultra-narrow-linewidth lasers. Building on the success of utilizing this nonlinearity at a classical level, a rich avenue is now being opened to explore Brillouin scattering within the paradigm of quantum optics. Here, we take a key step in this direction by employing quantum optical techniques yet to be utilized for Brillouin scattering to characterize the second-order coherence of Stokes scattering across the Brillouin lasing threshold. We use a silica microsphere resonator and single-photon counters to observe the expected transition from bunched statistics of thermal light below the lasing threshold to Poissonian statistics of coherent light above the threshold. Notably, at powers approaching the lasing threshold, we also observe super-thermal statistics, which arise due to instability and a ``flickering'' in and out of lasing as the pump field is transiently depleted. The statistics observed across the transition, including the ``flickering'', are a result of the full nonlinear three-wave mixing process and cannot be captured by a linearized model. These measurements are in good agreement with numerical solutions of the three-wave Langevin equations and are well demarcated by analytical expressions for the instability and the lasing thresholds. These results demonstrate that applying second-order-coherence and photon-counting measurements to Brillouin scattering provides new methods to advance our understanding of Brillouin scattering itself and progress toward quantum-state preparation and characterization of acoustic modes.

4.Quantitative scattering theory of near-field response for 1D polaritonic structures

Authors:Lorenzo Orsini, Iacopo Torre, Hanan Herzig-Sheinfux, Frank H. L. Koppens

Abstract: Scattering-type scanning near-field optical microscopy is a powerful imaging technique for studying materials beyond the diffraction limit. However, interpreting near-field measurements poses challenges in mapping the response of polaritonic structures to meaningful physical properties. To address this, we propose a theory based on the transfer matrix method to simulate the near-field response of 1D polaritonic structures. Our approach provides a computationally efficient and accurate analytical theory, relating the near-field response to well-defined physical properties. This work enhances the understanding of near-field images and complex polaritonic phenomena. Finally, this scattering theory can extend to other systems like atoms or nanoparticles near a waveguide.

5.Sol-gel Barium Titanate Nanohole Array as a Nonlinear Metasurface and a Photonic Crystal

Authors:Ülle-Linda Talts, Helena C. Weigand, Grégoire Saerens, Peter Benedek, Joel Winiger, Vanessa Wood, Jürg Leuthold, Viola Vogler-Neuling, Rachel Grange

Abstract: The quest of a nonlinear optical material that can be easily nanostructured over a large surface area is still ongoing. Here, we demonstrate a nanoimprinted nonlinear barium titanate 2D nanohole array that shows optical properties of a 2D photonic crystal and metasurface, depending on the direction of the optical axis. The challenge of nanostructuring the inert metal-oxide is resolved by direct soft nanoimprint lithography with sol-gel derived barium titanate enabling critical dimensions of 120 nm with aspect ratios of 5. The nanohole array exhibits a photonic bandgap in the infrared range when probed along the slab axis while lattice resonant states are observed in out-of-plane transmission configuration. The enhanced light-matter interaction from the resonant structure enables to increase the second-harmonic generation in the near-UV by a factor of 18 illustrating the potential in the flexible fabrication technique for barium titanate photonic devices.

6.Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides

Authors:Pao-Kang Chen, Ian Briggs, Chaohan Cui, Liang Zhang, Manav Shah, Linran Fan

Abstract: Nonlinear frequency mixing is of critical importance in extending the wavelength range of optical sources. It is also indispensable for emerging applications such as quantum information and photonic signal processing. Conventional lithium niobate with periodic poling is the most widely used device for frequency mixing due to the strong second-order nonlinearity. The recent development of nanophotonic lithium niobate waveguides promises improvements of nonlinear efficiencies by orders of magnitude with sub-wavelength optical conferment. However, the intrinsic nanoscale inhomogeneity in nanophotonic lithium niobate limits the coherent interaction length, leading to low nonlinear efficiencies. Therefore, the performance of nanophotonic lithium niobate waveguides is still far behind conventional counterparts. Here, we overcome this limitation and demonstrate ultra-efficient second order nonlinearity in nanophotonic lithium niobate waveguides significantly outperforming conventional crystals. This is realized by developing the adapted poling approach to eliminate the impact of nanoscale inhomogeneity in nanophotonic lithium niobate waveguides. We realize overall secondharmonic efficiency near 10^4 %/W without cavity enhancement, which saturates the theoretical limit. Phase-matching bandwidths and temperature tunability are improved through dispersion engineering. The ideal square dependence of the nonlinear efficiency on the waveguide length is recovered. We also break the trade-off between the energy conversion ratio and pump power. A conversion ratio over 80% is achieved in the single-pass configuration with pump power as low as 20 mW.

7.Time-domain Compressed Sensing

Authors:Kilian Scheffter, Jonathan Will, Claudius Riek, Herve Jousselin, Sebastien Coudreau, Nicolas Forget, Hanieh Fattahi

Abstract: Ultrashort time-domain spectroscopy, particularly field-resolved spectroscopy, are established methods for identifying the constituents and internal dynamics of samples. However, these techniques are often encumbered by the Nyquist criterion, leading to prolonged data acquisition and processing times as well as sizable data volumes. To mitigate these issues, we have successfully implemented the first instance of time-domain compressed sensing, enabling us to pinpoint the primary absorption peaks of atmospheric water vapor in response to tera-hertz light transients that exceed the Nyquist limit. Our method demonstrates successful identification of water absorption peaks up to 2.5 THz, even for sampling rates where the Nyquist frequency is as low as 0.75 THz, with a mean squared error of 12*10-4. Time-domain sparse sampling achieves considerable data compression while also expediting both the measurement and data processing time, representing a significant stride towards the realm of real-time spectroscopy