arXiv daily

Optics (physics.optics)

Tue, 13 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Time Resolved Investigation of High Repetition Rate Gas Jet Target For High Harmonic Generation

Authors:Balázs Nagyillés, Zsolt Diveki, Arjun Nayak, Mathieu Dumergue, Balázs Major, Katalin Varjú, Subhendu Kahaly

Abstract: High repetition rate gas targets constitute an essential component in intense laser matter interaction studies. The technology becomes challenging as the repetition rate approaches kHz regime. In this regime, cantilever based gas valves are employed, which can open and close in tens of microseconds, resulting in a unique kind of gas characteristics in both spatial and temporal domain. Here we characterize piezo cantilever based kHz pulsed gas valves in the low density regime, where it provides sufficient peak gas density for High Harmonic Generation while releasing significantly less amount of gas reducing the vacuum load within the interaction chamber, suitable for high vacuum applications. In order to obtain reliable information of the gas density in the target jet space-time resolved characterization is performed. The gas jet system is validated by conducting interferometric gas density estimations and high harmonic generation measurements at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI ALPS) facility. Our results demonstrate that while employing such targets for optimal high harmonic generation, the high intensity interaction should be confined to a suitable time window, after the cantilever opening. The measured gas density evolution correlates well with the integrated high harmonic flux and state of the art 3D simulation results, establishing the importance of such metrology.

2.Liquid-Crystal-Based Controllable Attenuators Operating in the 1-4 Terahertz Band

Authors:Aniela Dunn School of Chemistry, The University of Leeds, UK, Zhaopeng Zhang School of Physics and Astronomy, The University of Leeds, UK, Michael D. Horbury School of Electronic and Electrical Engineering, The University of Leeds, UK, Eleanor V. Nuttall School of Electronic and Electrical Engineering, The University of Leeds, UK, Yingjun Han School of Electronic and Electrical Engineering, The University of Leeds, UK, Mohammed Salih School of Electronic and Electrical Engineering, The University of Leeds, UK, Lianhe Li School of Electronic and Electrical Engineering, The University of Leeds, UK, Abigail Bond School of Physics and Astronomy, The University of Leeds, UK, Ehab Saleh School of Mechanical Engineering, The University of Leeds, UK, Russell Harris School of Mechanical Engineering, The University of Leeds, UK, Diego Pardo STFC Rutherford Appleton Laboratory, Didcot, UK, Brian N. Ellison STFC Rutherford Appleton Laboratory, Didcot, UK, Andrew D. Burnett School of Chemistry, The University of Leeds, UK, Helen F. Gleeson School of Physics and Astronomy, The University of Leeds, UK, Alexander Valavanis School of Electronic and Electrical Engineering, The University of Leeds, UK

Abstract: Liquid-crystal devices (LCDs) offer a potential route toward adaptive optical components for use in the < 2 THz band of the electromagnetic spectrum. We demonstrate LCDs using a commercially available material (E7), with unbiased birefringence values of 0.14-0.18 in the 0.3-4 THz band. We exploit the linear dichroism of the material to modulate the emission from a 3.4-THz quantum cascade laser by up to 40%, dependent upon both the liquid-crystal layer thickness and the bias voltage applied.

3.The Polychromatic T-matrix

Authors:Maxim Vavilin, Ivan Fernandez-Corbaton

Abstract: The T-matrix is a powerful tool that provides the complete description of the linear interaction between the electromagnetic field and a given object. In here, we generalize the usual monochromatic formalism to the case of polychromatic field-matter interaction. The group of transformations of special relativity provides the guidance for building the new formalism, which is inherently polychromatic. The polychromatic T-matrix affords the direct treatment of the interaction of electromagnetic pulses with objects, even when the objects move at constant relativistic speeds.

4.Visible and ultraviolet plasma lines of the He-Ne gas laser

Authors:B. D. E. McNiven, M. J. Clouter, G. Todd Andrews

Abstract: A study of Helium-Neon laser plasma lines was done using a double grating spectrometer and a He-Ne laser with an emission wavelength of 632.8 nm (15,802 cm$^{-1}$). The absolute wavenumber, measured to within $\sim0.1$ cm$^{-1}$, and wavelength of each plasma line are presented, along with intensity and shift relative to the main laser line. Several of the measured lines have not been reported in the literature and are observed at shifts between $0-1500$ cm$^{-1}$ from the laser line, a spectral region commonly probed by optical Raman scattering experiments. Accounting for the possibility of second-order diffraction permitted many previously unassigned lines to be attributed to known He or Ne electronic transitions with wavelengths in the ultraviolet region of the electromagnetic spectrum.

5.Metasurfaces for free-space coupling to multicore fibers

Authors:Jaewon Oh, Jun Yang, Louis Marra, Ahmed H. Dorrah, Alfonso Palmieri, Paulo Dainese, Federico Capasso

Abstract: Space-division multiplexing (SDM) with multicore fibers (MCFs) is envisioned to overcome the capacity crunch in optical fiber communications. Within these systems, the coupling optics that connect single-mode fibers (SMFs) to MCFs are key components in achieving high data transfer rates. Designing a compact and scalable coupler with low loss and crosstalk is a continuing challenge. Here, we introduce a metasurface-based free-space coupler that can be designed for any input array of SMFs to a MCF with arbitrary core layout. An inverse design technique - adjoint method - optimizes the metasurface phase profiles to maximize the overlap of the output fields to the MCF modes at each core position. As proof-of-concepts, we fabricated two types of 4-mode couplers for MCFs with linear and square core arrays. The measured insertion losses were as low as 1.2 dB and the worst-case crosstalk was less than -40.1 dB in the O-band (1260-1360 nm). Owing to its foundry-compatible fabrication, this coupler design could facilitate the widespread deployment of SDM based on MCFs.