arXiv daily

Artificial Intelligence (cs.AI)

Thu, 24 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023; Thu, 06 Apr 2023; Wed, 05 Apr 2023; Tue, 04 Apr 2023
1.LR-XFL: Logical Reasoning-based Explainable Federated Learning

Authors:Yanci Zhang, Han Yu

Abstract: Federated learning (FL) is an emerging approach for training machine learning models collaboratively while preserving data privacy. The need for privacy protection makes it difficult for FL models to achieve global transparency and explainability. To address this limitation, we incorporate logic-based explanations into FL by proposing the Logical Reasoning-based eXplainable Federated Learning (LR-XFL) approach. Under LR-XFL, FL clients create local logic rules based on their local data and send them, along with model updates, to the FL server. The FL server connects the local logic rules through a proper logical connector that is derived based on properties of client data, without requiring access to the raw data. In addition, the server also aggregates the local model updates with weight values determined by the quality of the clients' local data as reflected by their uploaded logic rules. The results show that LR-XFL outperforms the most relevant baseline by 1.19%, 5.81% and 5.41% in terms of classification accuracy, rule accuracy and rule fidelity, respectively. The explicit rule evaluation and expression under LR-XFL enable human experts to validate and correct the rules on the server side, hence improving the global FL model's robustness to errors. It has the potential to enhance the transparency of FL models for areas like healthcare and finance where both data privacy and explainability are important.

2.SayCanPay: Heuristic Planning with Large Language Models using Learnable Domain Knowledge

Authors:Rishi Hazra, Pedro Zuidberg Dos Martires, Luc De Raedt

Abstract: Large Language Models (LLMs) have demonstrated impressive planning abilities due to their vast "world knowledge". Yet, obtaining plans that are both feasible (grounded in affordances) and cost-effective (in plan length), remains a challenge, despite recent progress. This contrasts with heuristic planning methods that employ domain knowledge (formalized in action models such as PDDL) and heuristic search to generate feasible, optimal plans. Inspired by this, we propose to combine the power of LLMs and heuristic planning by leveraging the world knowledge of LLMs and the principles of heuristic search. Our approach, SayCanPay, employs LLMs to generate actions (Say) guided by learnable domain knowledge, that evaluates actions' feasibility (Can) and long-term reward/payoff (Pay), and heuristic search to select the best sequence of actions. Our contributions are (1) a novel framing of the LLM planning problem in the context of heuristic planning, (2) integrating grounding and cost-effective elements into the generated plans, and (3) using heuristic search over actions. Our extensive evaluations show that our model surpasses other LLM planning approaches.

3.Human Comprehensible Active Learning of Genome-Scale Metabolic Networks

Authors:Lun Ai, Shi-Shun Liang, Wang-Zhou Dai, Liam Hallett, Stephen H. Muggleton, Geoff S. Baldwin

Abstract: An important application of Synthetic Biology is the engineering of the host cell system to yield useful products. However, an increase in the scale of the host system leads to huge design space and requires a large number of validation trials with high experimental costs. A comprehensible machine learning approach that efficiently explores the hypothesis space and guides experimental design is urgently needed for the Design-Build-Test-Learn (DBTL) cycle of the host cell system. We introduce a novel machine learning framework ILP-iML1515 based on Inductive Logic Programming (ILP) that performs abductive logical reasoning and actively learns from training examples. In contrast to numerical models, ILP-iML1515 is built on comprehensible logical representations of a genome-scale metabolic model and can update the model by learning new logical structures from auxotrophic mutant trials. The ILP-iML1515 framework 1) allows high-throughput simulations and 2) actively selects experiments that reduce the experimental cost of learning gene functions in comparison to randomly selected experiments.

4.Acquiring Qualitative Explainable Graphs for Automated Driving Scene Interpretation

Authors:Nassim Belmecheri, Arnaud Gotlieb, Nadjib Lazaar, Helge Spieker

Abstract: The future of automated driving (AD) is rooted in the development of robust, fair and explainable artificial intelligence methods. Upon request, automated vehicles must be able to explain their decisions to the driver and the car passengers, to the pedestrians and other vulnerable road users and potentially to external auditors in case of accidents. However, nowadays, most explainable methods still rely on quantitative analysis of the AD scene representations captured by multiple sensors. This paper proposes a novel representation of AD scenes, called Qualitative eXplainable Graph (QXG), dedicated to qualitative spatiotemporal reasoning of long-term scenes. The construction of this graph exploits the recent Qualitative Constraint Acquisition paradigm. Our experimental results on NuScenes, an open real-world multi-modal dataset, show that the qualitative eXplainable graph of an AD scene composed of 40 frames can be computed in real-time and light in space storage which makes it a potentially interesting tool for improved and more trustworthy perception and control processes in AD.

5.Job Shop Scheduling Benchmark: Environments and Instances for Learning and Non-learning Methods

Authors:Robbert Reijnen, Kjell van Straaten, Zaharah Bukhsh, Yingqian Zhang

Abstract: We introduce an open-source GitHub repository containing comprehensive benchmarks for a wide range of machine scheduling problems, including Job Shop Scheduling (JSP), Flow Shop Scheduling (FSP), Flexible Job Shop Scheduling (FJSP), FJSP with Assembly constraints (FAJSP), FJSP with Sequence-Dependent Setup Times (FJSP-SDST), and the online FJSP (with online job arrivals). Our primary goal is to provide a centralized hub for researchers, practitioners, and enthusiasts interested in tackling machine scheduling challenges.

6.Short Run Transit Route Planning Decision Support System Using a Deep Learning-Based Weighted Graph

Authors:Nadav Shalit, Michael Fire, Dima Kagan, Eran Ben-Elia

Abstract: Public transport routing plays a crucial role in transit network design, ensuring a satisfactory level of service for passengers. However, current routing solutions rely on traditional operational research heuristics, which can be time-consuming to implement and lack the ability to provide quick solutions. Here, we propose a novel deep learning-based methodology for a decision support system that enables public transport (PT) planners to identify short-term route improvements rapidly. By seamlessly adjusting specific sections of routes between two stops during specific times of the day, our method effectively reduces times and enhances PT services. Leveraging diverse data sources such as GTFS and smart card data, we extract features and model the transportation network as a directed graph. Using self-supervision, we train a deep learning model for predicting lateness values for road segments. These lateness values are then utilized as edge weights in the transportation graph, enabling efficient path searching. Through evaluating the method on Tel Aviv, we are able to reduce times on more than 9\% of the routes. The improved routes included both intraurban and suburban routes showcasing a fact highlighting the model's versatility. The findings emphasize the potential of our data-driven decision support system to enhance public transport and city logistics, promoting greater efficiency and reliability in PT services.