arXiv daily

Artificial Intelligence (cs.AI)

Fri, 30 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023; Thu, 06 Apr 2023; Wed, 05 Apr 2023; Tue, 04 Apr 2023
1.LMBot: Distilling Graph Knowledge into Language Model for Graph-less Deployment in Twitter Bot Detection

Authors:Zijian Cai, Zhaoxuan Tan, Zhenyu Lei, Zifeng Zhu, Hongrui Wang, Qinghua Zheng, Minnan Luo

Abstract: As malicious actors employ increasingly advanced and widespread bots to disseminate misinformation and manipulate public opinion, the detection of Twitter bots has become a crucial task. Though graph-based Twitter bot detection methods achieve state-of-the-art performance, we find that their inference depends on the neighbor users multi-hop away from the targets, and fetching neighbors is time-consuming and may introduce bias. At the same time, we find that after finetuning on Twitter bot detection, pretrained language models achieve competitive performance and do not require a graph structure during deployment. Inspired by this finding, we propose a novel bot detection framework LMBot that distills the knowledge of graph neural networks (GNNs) into language models (LMs) for graph-less deployment in Twitter bot detection to combat the challenge of data dependency. Moreover, LMBot is compatible with graph-based and graph-less datasets. Specifically, we first represent each user as a textual sequence and feed them into the LM for domain adaptation. For graph-based datasets, the output of LMs provides input features for the GNN, enabling it to optimize for bot detection and distill knowledge back to the LM in an iterative, mutually enhancing process. Armed with the LM, we can perform graph-less inference, which resolves the graph data dependency and sampling bias issues. For datasets without graph structure, we simply replace the GNN with an MLP, which has also shown strong performance. Our experiments demonstrate that LMBot achieves state-of-the-art performance on four Twitter bot detection benchmarks. Extensive studies also show that LMBot is more robust, versatile, and efficient compared to graph-based Twitter bot detection methods.

2.Harnessing LLMs in Curricular Design: Using GPT-4 to Support Authoring of Learning Objectives

Authors:Pragnya Sridhar, Aidan Doyle, Arav Agarwal, Christopher Bogart, Jaromir Savelka, Majd Sakr

Abstract: We evaluated the capability of a generative pre-trained transformer (GPT-4) to automatically generate high-quality learning objectives (LOs) in the context of a practically oriented university course on Artificial Intelligence. Discussions of opportunities (e.g., content generation, explanation) and risks (e.g., cheating) of this emerging technology in education have intensified, but to date there has not been a study of the models' capabilities in supporting the course design and authoring of LOs. LOs articulate the knowledge and skills learners are intended to acquire by engaging with a course. To be effective, LOs must focus on what students are intended to achieve, focus on specific cognitive processes, and be measurable. Thus, authoring high-quality LOs is a challenging and time consuming (i.e., expensive) effort. We evaluated 127 LOs that were automatically generated based on a carefully crafted prompt (detailed guidelines on high-quality LOs authoring) submitted to GPT-4 for conceptual modules and projects of an AI Practitioner course. We analyzed the generated LOs if they follow certain best practices such as beginning with action verbs from Bloom's taxonomy in regards to the level of sophistication intended. Our analysis showed that the generated LOs are sensible, properly expressed (e.g., starting with an action verb), and that they largely operate at the appropriate level of Bloom's taxonomy, respecting the different nature of the conceptual modules (lower levels) and projects (higher levels). Our results can be leveraged by instructors and curricular designers wishing to take advantage of the state-of-the-art generative models to support their curricular and course design efforts.

3.An automated method for the ontological representation of security directives

Authors:Giampaolo Bella, Gianpietro Castiglione, Daniele Francesco Santamaria

Abstract: Large documents written in juridical language are difficult to interpret, with long sentences leading to intricate and intertwined relations between the nouns. The present paper frames this problem in the context of recent European security directives. The complexity of their language is here thwarted by automating the extraction of the relevant information, namely of the parts of speech from each clause, through a specific tailoring of Natural Language Processing (NLP) techniques. These contribute, in combination with ontology development principles, to the design of our automated method for the representation of security directives as ontologies. The method is showcased on a practical problem, namely to derive an ontology representing the NIS 2 directive, which is the peak of cybersecurity prescripts at the European level. Although the NLP techniques adopted showed some limitations and had to be complemented by manual analysis, the overall results provide valid support for directive compliance in general and for ontology development in particular.

4.Systematic Investigation of Sparse Perturbed Sharpness-Aware Minimization Optimizer

Authors:Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Tianshuo Xu, Xiaoshuai Sun, Tongliang Liu, Rongrong Ji, Dacheng Tao

Abstract: Deep neural networks often suffer from poor generalization due to complex and non-convex loss landscapes. Sharpness-Aware Minimization (SAM) is a popular solution that smooths the loss landscape by minimizing the maximized change of training loss when adding a perturbation to the weight. However, indiscriminate perturbation of SAM on all parameters is suboptimal and results in excessive computation, double the overhead of common optimizers like Stochastic Gradient Descent (SGD). In this paper, we propose Sparse SAM (SSAM), an efficient and effective training scheme that achieves sparse perturbation by a binary mask. To obtain the sparse mask, we provide two solutions based on Fisher information and dynamic sparse training, respectively. We investigate the impact of different masks, including unstructured, structured, and $N$:$M$ structured patterns, as well as explicit and implicit forms of implementing sparse perturbation. We theoretically prove that SSAM can converge at the same rate as SAM, i.e., $O(\log T/\sqrt{T})$. Sparse SAM has the potential to accelerate training and smooth the loss landscape effectively. Extensive experimental results on CIFAR and ImageNet-1K confirm that our method is superior to SAM in terms of efficiency, and the performance is preserved or even improved with a perturbation of merely 50\% sparsity. Code is available at https://github.com/Mi-Peng/Systematic-Investigation-of-Sparse-Perturbed-Sharpness-Aware-Minimization-Optimizer.

5.A behaviouristic approach to representing processes and procedures in the OASIS 2 ontology

Authors:Giampaolo Bella, Gianpietro Castiglione, Daniele Francesco Santamaria

Abstract: Foundational ontologies devoted to the effective representation of processes and procedures are not widely investigated at present, thereby limiting the practical adoption of semantic approaches in real scenarios where the precise instructions to follow must be considered. Also, the representation ought to include how agents should carry out the actions associated with the process, whether or not agents are able to perform those actions, the possible roles played as well as the related events. The OASIS ontology provides an established model to capture agents and their interactions but lacks means for representing processes and procedures carried out by agents. This motivates the research presented in this article, which delivers an extension of the OASIS 2 ontology to combine the capabilities for representing agents and their behaviours with the full conceptualization of processes and procedures. The overarching goal is to deliver a foundational OWL ontology that deals with agent planning, reaching a balance between generality and applicability, which is known to be an open challenge.

6.Comparing Reinforcement Learning and Human Learning using the Game of Hidden Rules

Authors:Eric Pulick, Vladimir Menkov, Yonatan Mintz, Paul Kantor, Vicki Bier

Abstract: Reliable real-world deployment of reinforcement learning (RL) methods requires a nuanced understanding of their strengths and weaknesses and how they compare to those of humans. Human-machine systems are becoming more prevalent and the design of these systems relies on a task-oriented understanding of both human learning (HL) and RL. Thus, an important line of research is characterizing how the structure of a learning task affects learning performance. While increasingly complex benchmark environments have led to improved RL capabilities, such environments are difficult to use for the dedicated study of task structure. To address this challenge we present a learning environment built to support rigorous study of the impact of task structure on HL and RL. We demonstrate the environment's utility for such study through example experiments in task structure that show performance differences between humans and RL algorithms.

7.Qualitative Prediction of Multi-Agent Spatial Interactions

Authors:Sariah Mghames, Luca Castri, Marc Hanheide, Nicola Bellotto

Abstract: Deploying service robots in our daily life, whether in restaurants, warehouses or hospitals, calls for the need to reason on the interactions happening in dense and dynamic scenes. In this paper, we present and benchmark three new approaches to model and predict multi-agent interactions in dense scenes, including the use of an intuitive qualitative representation. The proposed solutions take into account static and dynamic context to predict individual interactions. They exploit an input- and a temporal-attention mechanism, and are tested on medium and long-term time horizons. The first two approaches integrate different relations from the so-called Qualitative Trajectory Calculus (QTC) within a state-of-the-art deep neural network to create a symbol-driven neural architecture for predicting spatial interactions. The third approach implements a purely data-driven network for motion prediction, the output of which is post-processed to predict QTC spatial interactions. Experimental results on a popular robot dataset of challenging crowded scenarios show that the purely data-driven prediction approach generally outperforms the other two. The three approaches were further evaluated on a different but related human scenarios to assess their generalisation capability.

8.Transformers in Healthcare: A Survey

Authors:Subhash Nerella, Sabyasachi Bandyopadhyay, Jiaqing Zhang, Miguel Contreras, Scott Siegel, Aysegul Bumin, Brandon Silva, Jessica Sena, Benjamin Shickel, Azra Bihorac, Kia Khezeli, Parisa Rashidi

Abstract: With Artificial Intelligence (AI) increasingly permeating various aspects of society, including healthcare, the adoption of the Transformers neural network architecture is rapidly changing many applications. Transformer is a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing (NLP) tasks and has subsequently been adapted in many fields, including healthcare. In this survey paper, we provide an overview of how this architecture has been adopted to analyze various forms of data, including medical imaging, structured and unstructured Electronic Health Records (EHR), social media, physiological signals, and biomolecular sequences. Those models could help in clinical diagnosis, report generation, data reconstruction, and drug/protein synthesis. We identified relevant studies using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We also discuss the benefits and limitations of using transformers in healthcare and examine issues such as computational cost, model interpretability, fairness, alignment with human values, ethical implications, and environmental impact.

9.The Integer Linear Programming Inference Cookbook

Authors:Vivek Srikumar, Dan Roth

Abstract: Over the years, integer linear programs have been employed to model inference in many natural language processing problems. This survey is meant to guide the reader through the process of framing a new inference problem as an instance of an integer linear program and is structured as a collection of recipes. At the end, we will see two worked examples to illustrate the use of these recipes.