arXiv daily

Artificial Intelligence (cs.AI)

Tue, 13 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023; Thu, 06 Apr 2023; Wed, 05 Apr 2023; Tue, 04 Apr 2023
1.A Versatile Multi-Agent Reinforcement Learning Benchmark for Inventory Management

Authors:Xianliang Yang, Zhihao Liu, Wei Jiang, Chuheng Zhang, Li Zhao, Lei Song, Jiang Bian

Abstract: Multi-agent reinforcement learning (MARL) models multiple agents that interact and learn within a shared environment. This paradigm is applicable to various industrial scenarios such as autonomous driving, quantitative trading, and inventory management. However, applying MARL to these real-world scenarios is impeded by many challenges such as scaling up, complex agent interactions, and non-stationary dynamics. To incentivize the research of MARL on these challenges, we develop MABIM (Multi-Agent Benchmark for Inventory Management) which is a multi-echelon, multi-commodity inventory management simulator that can generate versatile tasks with these different challenging properties. Based on MABIM, we evaluate the performance of classic operations research (OR) methods and popular MARL algorithms on these challenging tasks to highlight their weaknesses and potential.

2.Exploiting Configurations of MaxSAT Solvers

Authors:Josep Alòs, Carlos Ansótegui, Josep M. Salvia, Eduard Torres

Abstract: In this paper, we describe how we can effectively exploit alternative parameter configurations to a MaxSAT solver. We describe how these configurations can be computed in the context of MaxSAT. In particular, we experimentally show how to easily combine configurations of a non-competitive solver to obtain a better solving approach.

3.For Better or Worse: The Impact of Counterfactual Explanations' Directionality on User Behavior in xAI

Authors:Ulrike Kuhl, André Artelt, Barbara Hammer

Abstract: Counterfactual explanations (CFEs) are a popular approach in explainable artificial intelligence (xAI), highlighting changes to input data necessary for altering a model's output. A CFE can either describe a scenario that is better than the factual state (upward CFE), or a scenario that is worse than the factual state (downward CFE). However, potential benefits and drawbacks of the directionality of CFEs for user behavior in xAI remain unclear. The current user study (N=161) compares the impact of CFE directionality on behavior and experience of participants tasked to extract new knowledge from an automated system based on model predictions and CFEs. Results suggest that upward CFEs provide a significant performance advantage over other forms of counterfactual feedback. Moreover, the study highlights potential benefits of mixed CFEs improving user performance compared to downward CFEs or no explanations. In line with the performance results, users' explicit knowledge of the system is statistically higher after receiving upward CFEs compared to downward comparisons. These findings imply that the alignment between explanation and task at hand, the so-called regulatory fit, may play a crucial role in determining the effectiveness of model explanations, informing future research directions in xAI. To ensure reproducible research, the entire code, underlying models and user data of this study is openly available: https://github.com/ukuhl/DirectionalAlienZoo

4.On Guiding Search in HTN Temporal Planning with non Temporal Heuristics

Authors:Nicolas Cavrel, Damien Pellier, Humbert Fiorino

Abstract: The Hierarchical Task Network (HTN) formalism is used to express a wide variety of planning problems as task decompositions, and many techniques have been proposed to solve them. However, few works have been done on temporal HTN. This is partly due to the lack of a formal and consensual definition of what a temporal hierarchical planning problem is as well as the difficulty to develop heuristics in this context. In response to these inconveniences, we propose in this paper a new general POCL (Partial Order Causal Link) approach to represent and solve a temporal HTN problem by using existing heuristics developed to solve non temporal problems. We show experimentally that this approach is performant and can outperform the existing ones.

5.Temporalising Unique Characterisability and Learnability of Ontology-Mediated Queries

Authors:Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, Michael Zakharyaschev

Abstract: Recently, the study of the unique characterisability and learnability of database queries by means of examples has been extended to ontology-mediated queries. Here, we study in how far the obtained results can be lifted to temporalised ontology-mediated queries. We provide a systematic introduction to the relevant approaches in the non-temporal case and then show general transfer results pinpointing under which conditions existing results can be lifted to temporalised queries.

6.An Interleaving Semantics of the Timed Concurrent Language for Argumentation to Model Debates and Dialogue Games

Authors:Stefano Bistarelli, Maria Chiara Meo, Carlo Taticchi

Abstract: Time is a crucial factor in modelling dynamic behaviours of intelligent agents: activities have a determined temporal duration in a real-world environment, and previous actions influence agents' behaviour. In this paper, we propose a language for modelling concurrent interaction between agents that also allows the specification of temporal intervals in which particular actions occur. Such a language exploits a timed version of Abstract Argumentation Frameworks to realise a shared memory used by the agents to communicate and reason on the acceptability of their beliefs with respect to a given time interval. An interleaving model on a single processor is used for basic computation steps, with maximum parallelism for time elapsing. Following this approach, only one of the enabled agents is executed at each moment. To demonstrate the capabilities of language, we also show how it can be used to model interactions such as debates and dialogue games taking place between intelligent agents. Lastly, we present an implementation of the language that can be accessed via a web interface. Under consideration in Theory and Practice of Logic Programming (TPLP).

7.Towards Explainable TOPSIS: Visual Insights into the Effects of Weights and Aggregations on Rankings

Authors:Robert Susmaga, Izabela Szczech, Dariusz Brzezinski

Abstract: Multi-Criteria Decision Analysis (MCDA) is extensively used across diverse industries to assess and rank alternatives. Among numerous MCDA methods developed to solve real-world ranking problems, TOPSIS remains one of the most popular choices in many application areas. TOPSIS calculates distances between the considered alternatives and two predefined ones, namely the ideal and the anti-ideal, and creates a ranking of the alternatives according to a chosen aggregation of these distances. However, the interpretation of the inner workings of TOPSIS is difficult, especially when the number of criteria is large. To this end, recent research has shown that TOPSIS aggregations can be expressed using the means (M) and standard deviations (SD) of alternatives, creating MSD-space, a tool for visualizing and explaining aggregations. Even though MSD-space is highly useful, it assumes equally important criteria, making it less applicable to real-world ranking problems. In this paper, we generalize the concept of MSD-space to weighted criteria by introducing the concept of WMSD-space defined by what is referred to as weight-scaled means and standard deviations. We demonstrate that TOPSIS and similar distance-based aggregation methods can be successfully illustrated in a plane and interpreted even when the criteria are weighted, regardless of their number. The proposed WMSD-space offers a practical method for explaining TOPSIS rankings in real-world decision problems.

8.Contextual Dictionary Lookup for Knowledge Graph Completion

Authors:Jining Wang, Delai Qiu, YouMing Liu, Yining Wang, Chuan Chen, Zibin Zheng, Yuren Zhou

Abstract: Knowledge graph completion (KGC) aims to solve the incompleteness of knowledge graphs (KGs) by predicting missing links from known triples, numbers of knowledge graph embedding (KGE) models have been proposed to perform KGC by learning embeddings. Nevertheless, most existing embedding models map each relation into a unique vector, overlooking the specific fine-grained semantics of them under different entities. Additionally, the few available fine-grained semantic models rely on clustering algorithms, resulting in limited performance and applicability due to the cumbersome two-stage training process. In this paper, we present a novel method utilizing contextual dictionary lookup, enabling conventional embedding models to learn fine-grained semantics of relations in an end-to-end manner. More specifically, we represent each relation using a dictionary that contains multiple latent semantics. The composition of a given entity and the dictionary's central semantics serves as the context for generating a lookup, thus determining the fine-grained semantics of the relation adaptively. The proposed loss function optimizes both the central and fine-grained semantics simultaneously to ensure their semantic consistency. Besides, we introduce two metrics to assess the validity and accuracy of the dictionary lookup operation. We extend several KGE models with the method, resulting in substantial performance improvements on widely-used benchmark datasets.

9.V-LoL: A Diagnostic Dataset for Visual Logical Learning

Authors:Lukas Helff, Wolfgang Stammer, Hikaru Shindo, Devendra Singh Dhami, Kristian Kersting

Abstract: Despite the successes of recent developments in visual AI, different shortcomings still exist; from missing exact logical reasoning, to abstract generalization abilities, to understanding complex and noisy scenes. Unfortunately, existing benchmarks, were not designed to capture more than a few of these aspects. Whereas deep learning datasets focus on visually complex data but simple visual reasoning tasks, inductive logic datasets involve complex logical learning tasks, however, lack the visual component. To address this, we propose the visual logical learning dataset, V-LoL, that seamlessly combines visual and logical challenges. Notably, we introduce the first instantiation of V-LoL, V-LoL-Trains, -- a visual rendition of a classic benchmark in symbolic AI, the Michalski train problem. By incorporating intricate visual scenes and flexible logical reasoning tasks within a versatile framework, V-LoL-Trains provides a platform for investigating a wide range of visual logical learning challenges. We evaluate a variety of AI systems including traditional symbolic AI, neural AI, as well as neuro-symbolic AI. Our evaluations demonstrate that even state-of-the-art AI faces difficulties in dealing with visual logical learning challenges, highlighting unique advantages and limitations specific to each methodology. Overall, V-LoL opens up new avenues for understanding and enhancing current abilities in visual logical learning for AI systems.

10.DreamDecompiler: Improved Bayesian Program Learning by Decompiling Amortised Knowledge

Authors:Alessandro B. Palmarini, Christopher G. Lucas, N. Siddharth

Abstract: Solving program induction problems requires searching through an enormous space of possibilities. DreamCoder is an inductive program synthesis system that, whilst solving problems, learns to simplify search in an iterative wake-sleep procedure. The cost of search is amortised by training a neural search policy, reducing search breadth and effectively "compiling" useful information to compose program solutions across tasks. Additionally, a library of program components is learnt to express discovered solutions in fewer components, reducing search depth. In DreamCoder, the neural search policy has only an indirect effect on the library learnt through the program solutions it helps discover. We present an approach for library learning that directly leverages the neural search policy, effectively "decompiling" its amortised knowledge to extract relevant program components. This provides stronger amortised inference: the amortised knowledge learnt to reduce search breadth is now also used to reduce search depth. We integrate our approach with DreamCoder and demonstrate faster domain proficiency with improved generalisation on a range of domains, particularly when fewer example solutions are available.

11.Synapse: Leveraging Few-Shot Exemplars for Human-Level Computer Control

Authors:Longtao Zheng, Rundong Wang, Bo An

Abstract: This paper investigates the design of few-shot exemplars for computer automation through prompting large language models (LLMs). While previous prompting approaches focus on self-correction, we find that well-structured exemplars alone are sufficient for human-level performance. We present Synapse, an in-context computer control agent demonstrating human-level performance on the MiniWob++ benchmark. Synapse consists of three main components: 1) state-conditional decomposition, which divides demonstrations into exemplar sets based on the agent's need for new environment states, enabling temporal abstraction; 2) structured prompting, which filters states and reformulates task descriptions for each set to improve planning correctness; and 3) exemplar retrieval, which associates incoming tasks with corresponding exemplars in an exemplar database for multi-task adaptation and generalization. Synapse overcomes context length limits, reduces errors in multi-step control, and allows for more exemplars within the context. Importantly, Synapse complements existing prompting approaches that enhance LLMs' reasoning and planning abilities. Synapse outperforms previous methods, including behavioral cloning, reinforcement learning, finetuning, and prompting, with an average success rate of $98.5\%$ across 63 tasks in MiniWob++. Notably, Synapse relies on exemplars from only 47 tasks, demonstrating effective generalization to novel tasks. Our results highlight the potential of in-context learning to advance the integration of LLMs into practical tool automation.