High Energy Astrophysical Phenomena (astro-ph.HE)
Fri, 14 Apr 2023
1.X-ray polarization evidence for a 200 years-old flare of Sgr A$^*$
Authors:Frédéric Marin, Eugene Churazov, Ildar Khabibullin, Riccardo Ferrazzoli, Laura Di Gesu, Thibault Barnouin, Alessandro Di Marco, Riccardo Middei, Alexey Vikhlinin, Enrico Costa, Paolo Soffitta, Fabio Muleri, Rashid Sunyaev, William Forman, Ralph Kraft, Stefano Bianchi, Immacolata Donnarumma, Pierre-Olivier Petrucci, Teruaki Enoto, Iván Agudo, Lucio A. Antonelli, Matteo Bachetti, Luca Baldini, Wayne H. Baumgartner, Ronaldo Bellazzini, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Niccolò Bucciantini, Fiamma Capitanio, Simone Castellano, Elisabetta Cavazzuti, Chien-Ting Chen, Stefano Ciprini, Alessandra De Rosa, Ettore Del Monte, Niccolò Di Lalla, Victor Doroshenko, Michal Dovciak, Steven R. Ehlert, Yuri Evangelista, Sergio Fabiani, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Jeremy Heyl, Adam Ingram, Wataru Iwakiri, Svetlana G. Jorstad, Philip Kaaret, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Henric Krawczynski, Fabio La Monaca, Luca Latronico, Ioannis Liodakis, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Alan P. Marscher, Herman L. Marshall, Francesco Massaro, Giorgio Matt, Ikuyuki Mitsuishi, Tsunefumi Mizuno, Michela Negro, C. -Y. Ng, Stephen L. O'Dell, Nicola Omodei, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Abel L. Peirson, Matteo Perri, Melissa Pesce-Rollins, Maura Pilia, Andrea Possenti, Juri Poutanen, Simonetta Puccetti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Oliver J. Roberts, Roger W. Romani, Carmelo Sgrò, Patrick Slane, Gloria Spandre, Doug Swartz, Toru Tamagawa, Fabrizio Tavecchio, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicholas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey S. Tsygankov, Roberto Turolla, Jacco Vink, Martin C. Weisskopf, Kinwah Wu, Fei Xie, Silvia Zane
Abstract: The center of the Milky Way Galaxy hosts a $\sim$4 million solar mass black hole (Sgr A$^*$) that is currently very quiescent with a luminosity many orders of magnitude below those of active galactic nuclei. Reflection of X-rays from Sgr A$^*$ by dense gas in the Galactic Center region offers a means to study its past flaring activity on times scales of hundreds and thousands of years. The shape of the X-ray continuum and the strong fluorescent iron line observed from giant molecular clouds in the vicinity of Sgr A$^*$ are consistent with the reflection scenario. If this interpretation is correct, the reflected continuum emission should be polarized. Here we report observations of polarized X-ray emission in the direction of the Galactic center molecular clouds using the Imaging X-ray Polarimetry Explorer (IXPE). We measure a polarization degree of 31\% $\pm$ 11\%, and a polarization angle of $-$48$^\circ$ $\pm$ 11$^\circ$. The polarization angle is consistent with Sgr A$^*$ being the primary source of the emission, while the polarization degree implies that some 200 years ago the X-ray luminosity of Sgr A$^*$ was briefly comparable to a Seyfert galaxy.
2.Measuring spin in coalescing binaries of neutron stars showing double precursors
Authors:Hao-Jui Kuan, Arthur G. Suvorov, Kostas D. Kokkotas
Abstract: Gamma-ray bursts resulting from binary neutron-star mergers are sometimes preceded by precursor flares. These harbingers may be ignited by quasi-normal modes, excited by orbital resonances, shattering the stellar crust of one of the inspiralling stars up to $\gtrsim10$ seconds before coalescence. In the rare case that a system displays two precursors, successive overtones of either interface- or $g$-modes may be responsible for the overstrainings. Since the free-mode frequencies of these overtones have an almost constant ratio, and the inertial-frame frequencies for rotating stars are shifted relative to static ones, the spin frequency of the flaring component can be constrained as a function of the equation of state, the binary mass ratio, the mode quantum numbers, and the spin-orbit misalignment angle. As a demonstration of the method, we find that the precursors of GRB090510 hint at a spin frequency range of $2 \lesssim \nu_{\star}/\text{Hz} \lesssim 20$ for the shattering star if we allow for an arbitrary misalignment angle, assuming $\ell=2$ $g$-modes account for the events.
3.The Impacts of Neutron-Star Structure and Base Heating on Type I X-Ray Bursts and Code Comparison
Authors:Guoqing Zhen, Guoliang Lv, Helei Liu, Akira Dohi, Bobuya Nishimura, Chunhua Zhu, Liyu Song, Weiyang Wang, Renxin Xu
Abstract: Type I X-ray bursts are rapidly brightening phenomena triggered by thermonuclear burning on accreting layer of a neutron star (NS). The light curves represent the physical properties of NSs and the nuclear reactions on the proton-rich nuclei. The numerical treatments of the accreting NS and physics of the NS interior are not established, which shows uncertainty in modelling for observed X-ray light curves. In this study, we investigate theoretical X-ray-burst models, compared with burst light curves with GS~1826-24 observations. We focus on the impacts of the NS mass, the NS radius, and base-heating on the NS surface using the MESA code. We find a monotonic correlation between the NS mass and the parameters of the light curve. The higher the mass, the longer the recurrence time and the greater the peak luminosity. While the larger the radius, the longer the recurrence time, the peak luminosity remains nearly constant. In the case of increasing base heating, both the recurrence time and peak luminosity decrease. We also examine the above results using with a different numerical code, HERES, based on general relativity and consider the central NS. We find that the burst rate, burst energy and burst strength are almost same in two X-ray burst codes by adjusting the base-heat parameter in MESA (the relative errors $\lesssim5\%$), while the duration time and the rise time are significantly different between (the relative error is possibly $\sim50\%$). The peak luminosity and the e-folding time are ragged between two codes for different accretion rates.
4.Effect of magnetic fields on the dynamics and gravitational wave emission of PPI-saturated self-gravitating accretion disks: simulations in full GR
Authors:Erik Wessel, Vasileios Paschalidis, Antonios Tsokaros, Milton Ruiz, Stuart L. Shapiro
Abstract: We explore the effect magnetic fields have on self-gravitating accretion disks around spinning black holes via numerical evolutions in full dynamical magnetohydrodynamic spacetimes. The configurations we study are unstable to the Papaloizou-Pringle Instability (PPI). PPI-saturated accretion tori have been shown to produce gravitational waves, detectable to cosmological distances by third-generation gravitational wave (GW) observatories. While the PPI operates strongly for purely hydrodynamic disks, the situation can be different for disks hosting initially small magnetic fields. Evolutions of disks without self-gravity in fixed BH spacetimes have shown that small seed fields can initiate the rapid growth of the magneto-rotational instability (MRI), which then strongly suppresses the PPI. Since realistic astrophysical disks are expected to be magnetized, PPI-generated GW signals may be suppressed as well. However, it is unclear what happens when the disk self-gravity is restored. Here, we study the impact of magnetic fields on the PPI-saturated state of a self-gravitating accretion disk around a spinning BH ($\chi = 0.7$) aligned with the disk angular momentum, as well as one around a non-spinning BH. We find the MRI is effective at reducing the amplitude of PPI modes and their associated GWs, but the systems still generate GWs. Estimating the detectability of these systems accross a wide range of masses, we show that magnetic fields reduce the maximum detection distance by Cosmic Explorer from 300Mpc (in the pure hydrodynamic case) to 45Mpc for a $10 M_{\odot}$ system, by LISA from 11500Mpc to 2700Mpc for a $2 \times 10^{5} M_{\odot}$ system, and by DECIGO from $z \approx 5$ down to $z \approx 2$ for a $1000 M_{\odot}$ system.
5.Optimizing the Resolution of Hydrodynamic Simulations for MCRaT Radiative Transfer Calculations
Authors:Jose Arita-Escalante, Tyler Parsotan, S. Bradley Cenko
Abstract: Despite their discovery about half a century ago, the Gamma-ray burst (GRB) prompt emission mechanism is still not well understood. Theoretical modeling of the prompt emission has advanced considerably due to new computational tools and techniques. One such tool is the PLUTO hydrodynamics code, which is used to numerically simulate GRB outflows. PLUTO uses Adaptive Mesh Refinement to focus computational efforts on the portion of the grid that contains the simulated jet. Another tool is the Monte Carlo Radiation Transfer (MCRaT) code, which predicts electromagnetic signatures of GRBs by conducting photon scatterings within a jet using PLUTO. The effects of the underlying resolution of a PLUTO simulation with respect to MCRaT post-processing radiative transfer results have not yet been quantified. We analyze an analytic spherical outflow and a hydrodynamically simulated GRB jet with MCRaT at varying spatial and temporal resolutions and quantify how decreasing both resolutions affect the resulting mock observations. We find that changing the spatial resolution changes the hydrodynamic properties of the jet, which directly affect the MCRaT mock observable peak energies. We also find that decreasing the temporal resolution artificially decreases the high energy slope of the mock observed spectrum, which increases both the spectral peak energy and the luminosity. We show that the effects are additive when both spatial and temporal resolutions are modified. Our results allow us to understand how decreased hydrodynamic temporal and spatial resolutions affect the results of post-processing radiative transfer calculations, allowing for the optimization of hydrodynamic simulations for radiative transfer codes.