arXiv daily

Mesoscale and Nanoscale Physics (cond-mat.mes-hall)

Fri, 04 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Floquet systems with continuous dynamical symmetries: characterization, time-dependent Noether charge, and integrability

Authors:Yukio Kaneko, Tatsuhiko N. Ikeda

Abstract: We study quantum Floquet (periodically-driven) systems having continuous dynamical symmetry (CDS) consisting of a time translation and a unitary transformation on the Hilbert space. Unlike the discrete ones, the CDS strongly constrains the possible Hamiltonians $H(t)$ and allows us to obtain all the Floquet states by solving a finite-dimensional eigenvalue problem. Besides, Noether's theorem leads to a time-dependent conservation charge, whose expectation value is time-independent throughout evolution. We exemplify these consequences of CDS in the seminal Rabi model, an effective model of a nitrogen-vacancy center in diamonds without strain terms, and Heisenberg spin models in rotating fields. Our results provide a systematic way of solving for Floquet states and explain how they avoid hybridization in quasienergy diagrams.

2.Disorder-Induced Phase Transitions in Three-Dimensional Chiral Second-Order Topological Insulator

Authors:Yedi Shen, Zeyu Li, Qian Niu, Zhenhua Qiao

Abstract: Topological insulators have been extended to higher-order versions that possess topological hinge or corner states in lower dimensions. However, their robustness against disorder is still unclear. Here, we theoretically investigate the phase transitions of three-dimensional (3D) chiral second-order topological insulator (SOTI) in the presence of disorders. Our results show that, by increasing disorder strength, the nonzero densities of states of side surface and bulk emerge at critical disorder strengths of $W_{S}$ and $W_{B}$, respectively. The spectral function indicates that the bulk gap is only closed at one of the $R_{4z}\mathcal{T}$-invariant points, i.e., $\Gamma_{3}$. The closing of side surface gap or bulk gap is ascribed to the significant decrease of the elastic mean free time of quasi-particles. Because of the localization of side surface states, we find that the 3D chiral SOTI is robust at an averaged quantized conductance of $2e^{2}/h$ with disorder strength up to $W_{B}$. When the disorder strength is beyond $W_{B}$, the 3D chiral SOTI is then successively driven into two phases, i.e., diffusive metallic phase and Anderson insulating phase. Furthermore, an averaged conductance plateau of $e^{2}/h$ emerges in the diffusive metallic phase.

3.Anisotropy of the spin Hall effect in a Dirac ferromagnet

Authors:Guanxiong Qu, Masamitsu Hayashi, Masao Ogata, Junji Fujimoto

Abstract: We study the intrinsic spin Hall effect of a Dirac Hamiltonian system with ferromagnetic exchange coupling, a minimal model combining relativistic spin-orbit interaction and ferromagnetism. The energy bands of the Dirac Hamiltonian are split after introducing a Stoner-type ferromagnetic ordering which breaks the spherical symmetry of pristine Dirac model. The totally antisymmetric spin Hall conductivity (SHC) tensor becomes axially anisotropic along the direction of external electric field. Interestingly, the anisotropy does not vanish in the asymptotic limit of zero magnetization. We show that the ferromagnetic ordering breaks the spin degeneracy of the eigenfunctions and modifies the selection rules of the interband transitions for the intrinsic spin Hall effect. The difference in the selection rule between the pristine and the ferromagnetic Dirac phases causes the anisotropy of the SHC, resulting in a discontinuity of the SHC as the magnetization, directed orthogonal to the electric field, is reduced to zero in the ferromagnetic Dirac phase and enters the pristine Dirac phase.

4.Coherent spin qubit shuttling through germanium quantum dots

Authors:Floor van Riggelen-Doelman, Chien-An Wang, Sander L. de Snoo, William I. L. Lawrie, Nico W. Hendrickx, Maximilian Rimbach-Russ, Amir Sammak, Giordano Scappucci, Corentin Déprez, Menno Veldhorst

Abstract: Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a challenge. Here, we show that a spin qubit can be shuttled through multiple quantum dots while preserving its quantum information. Remarkably, we achieve these results using hole spin qubits in germanium, despite the presence of strong spin-orbit interaction. We accomplish the shuttling of spin basis states over effective lengths beyond 300 $\mu$m and demonstrate the coherent shuttling of superposition states over effective lengths corresponding to 9 $\mu$m, which we can extend to 49 $\mu$m by incorporating dynamical decoupling. These findings indicate qubit shuttling as an effective approach to route qubits within registers and to establish quantum links between registers.