arXiv daily

Mesoscale and Nanoscale Physics (cond-mat.mes-hall)

Fri, 23 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Noise-induced, ac-stabilized sine-Gordon breathers: Emergence and statistics

Authors:Duilio De Santis, Claudio Guarcello, Bernardo Spagnolo, Angelo Carollo, Davide Valenti

Abstract: Noisy and ac forcing can cooperatively lead to the emergence of sine-Gordon breathers robust to dissipation. This phenomenon is studied, for both Neumann and periodic boundary conditions (NBC and PBC, respectively), at different values of the main system parameters, such as the noise intensity and the ac frequency-amplitude pair. In all the considered cases, nonmonotonicities of the probability of generating only breathers versus the noise strength are observed, implying that optimal noise ranges for the breather formation process exist. Within the latter scenarios, the statistics of the breathers' number, position, and amplitude are analyzed. The number of breathers is found to grow, on average, with the noise amplitude. The breathers' spatial distribution is sharply peaked at the system's edges for NBC, whereas it is essentially uniform for PBC. The average breather amplitude is dictated by the ac frequency-amplitude pair. Finally, a size analysis shows that the minimum system length for the generation mechanism is given by the typical breather half-width (width) in NBC (PBC).

2.Kapitza-resistance-like exciton dynamics in atomically flat MoSe$_{2}$-WSe$_{2}$ lateral heterojunction

Authors:Hassan Lamsaadi, Dorian Beret, Ioannis Paradisanos, Pierre Renucci, Delphine Lagarde, Xavier Marie, Bernhard Urbaszek, Ziyang Gan, Antony George, Kenji Watanabe, Takashi Taniguchi, Andrey Turchanin, Laurent Lombez, Nicolas Combe, Vincent Paillard, Jean-Marie Poumirol

Abstract: Being able to control the neutral excitonic flux is a mandatory step for the development of future room-temperature two-dimensional excitonic devices. Semiconducting Monolayer Transition Metal Dichalcogenides (TMD-ML) with extremely robust and mobile excitons are highly attractive in this regard. However, generating an efficient and controlled exciton transport over long distances is a very challenging task. Here we demonstrate that an atomically sharp TMD-ML lateral heterostructure (MoSe$_{2}$-WSe$_{2}$) transforms the isotropic exciton diffusion into a unidirectional excitonic flow through the junction. Using tip-enhanced photoluminescence spectroscopy (TEPL) and a modified exciton transfer model, we show a discontinuity of the exciton density distribution on each side of the interface. We introduce the concept of exciton Kapitza resistance, by analogy with the interfacial thermal resistance referred to as Kapitza resistance. By comparing different heterostructures with or without top hexagonal boron nitride (hBN) layer, we deduce that the transport properties can be controlled, over distances far greater than the junction width, by the exciton density through near-field engineering and/or laser power density. This work provides a new approach for controlling the neutral exciton flow, which is key toward the conception of excitonic devices.

3.Experimental observation of non-Hermitian higher-order skin interface states in topological electric circuits

Authors:Bin Liu School of Materials Science and Physics, China University of Mining and Technology, Yang Li School of Materials Science and Physics, China University of Mining and Technology, Bin Yang School of Materials Science and Physics, China University of Mining and Technology, Xiaopeng Shen School of Materials Science and Physics, China University of Mining and Technology, Yuting Yang School of Materials Science and Physics, China University of Mining and Technology, Zhi Hong Hang School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University Institute for Advanced Study, Soochow University, Motohiko Ezawa Department of Applied Physics, University of Tokyo

Abstract: The study of topological states has developed rapidly in electric circuits, which permits flexible fabrications of non-Hermitian systems by introducing non-Hermitian terms. Here, nonreciprocal coupling terms are realized by utilizing a voltage follower module in non-Hermitian topological electric circuits. We report the experimental realization of one- and two- dimensional non-Hermitian skin interface states in electric circuits, where interface states induced by non-Hermitian skin effects are localized at the interface of different domains carrying different winding numbers. Our electric circuit system provides a readily accessible platform to explore non-Hermitian-induced topological phases, and paves a new road for device applications.

4.Transport signatures of plasmon fluctuations in electron hydrodynamics

Authors:Dmitry Zverevich, Alex Levchenko

Abstract: In two-dimensional electron systems, plasmons are gapless and long-lived collective excitations of propagating charge density oscillations. We study the fluctuation mechanism of plasmon-assisted transport in the regime of electron hydrodynamics. We consider pristine electron liquids where charge fluctuations are thermally induced by viscous stresses and intrinsic currents, while attenuation of plasmons is determined by the Maxwell mechanism of charge relaxation. We show that while the contribution of plasmons to the shear viscosity and thermal conductivity of a Fermi liquid is small, plasmon resonances in the bilayer devices enhance the drag resistance. In systems without Galilean invariance, fluctuation-driven contributions to dissipative coefficients can be described only in terms of hydrodynamic quantities: intrinsic conductivity, viscosity, and plasmon dispersion relation.

5.Spin-valley locking for in-gap quantum dots in a MoS2 transistor

Authors:Radha Krishnan, Sangram Biswas, Yu-Ling Hsueh, Hongyang Ma, Rajib Rahman, Bent Weber

Abstract: Spins confined to atomically-thin semiconductors are being actively explored as quantum information carriers. In transition metal dichalcogenides (TMDCs), the hexagonal crystal lattice gives rise to an additional valley degree of freedom with spin-valley locking and potentially enhanced spin life- and coherence times. However, realizing well-separated single-particle levels, and achieving transparent electrical contact to address them has remained challenging. Here, we report well-defined spin states in a few-layer MoS$ _2$ transistor, characterized with a spectral resolution of $\sim{50~\mu}$eV at ${T_\textrm{el} = 150}$~mK. Ground state magnetospectroscopy confirms a finite Berry-curvature induced coupling of spin and valley, reflected in a pronounced Zeeman anisotropy, with a large out-of-plane $g$-factor of ${g_\perp \simeq 8}$. A finite in-plane $g$-factor (${g_\parallel \simeq 0.55-0.8}$) allows us to quantify spin-valley locking and estimate the spin-orbit splitting ${2\Delta_{\rm SO} \sim 100~\mu}$eV. The demonstration of spin-valley locking is an important milestone towards realizing spin-valley quantum bits.