arXiv daily

Combinatorics (math.CO)

Tue, 08 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.The Widths of Strict Outerconfluent Graphs

Authors:David Eppstein

Abstract: Strict outerconfluent drawing is a style of graph drawing in which vertices are drawn on the boundary of a disk, adjacencies are indicated by the existence of smooth curves through a system of tracks within the disk, and no two adjacent vertices are connected by more than one of these smooth tracks. We investigate graph width parameters on the graphs that have drawings in this style. We prove that the clique-width of these graphs is unbounded, but their twin-width is bounded.

2.A class of trees determined by their chromatic symmetric functions

Authors:Yuzhenni Wang, Xingxing Yu, Xiao-Dong Zhang

Abstract: Stanley introduced the concept of chromatic symmetric functions of graphs which extends and refines the notion of chromatic polynomials of graphs. Stanley further conjectured that trees are determined up to isomorphism by their chromatic symmetric functions. In this paper, we study various representations of chromatic symmetric functions. We verify Stanley's conjecture for the class of trees with exactly two vertices of degree at least 3.

3.Integration on complex Grassmannians, deformed monotone Hurwitz numbers, and interlacing phenomena

Authors:Xavier Coulter, Norman Do, Ellena Moskovsky

Abstract: We introduce a family of polynomials, which arise in three distinct ways: in the large $N$ expansion of a matrix integral, as a weighted enumeration of factorisations of permutations, and via the topological recursion. More explicitly, we interpret the complex Grassmannian $\mathrm{Gr}(M,N)$ as the space of $N \times N$ idempotent Hermitian matrices of rank $M$ and develop a Weingarten calculus to integrate products of matrix elements over it. In the regime of large $N$ and fixed ratio $\frac{M}{N}$, such integrals have expansions whose coefficients count factorisations of permutations into monotone sequences of transpositions, with each sequence weighted by a monomial in $t = 1 - \frac{N}{M}$. This gives rise to the desired polynomials, which specialise to the monotone Hurwitz numbers when $t = 1$. These so-called deformed monotone Hurwitz numbers satisfy a cut-and-join recursion, a one-point recursion, and the topological recursion. Furthermore, we conjecture on the basis of overwhelming empirical evidence that the deformed monotone Hurwitz numbers are real-rooted polynomials whose roots satisfy remarkable interlacing phenomena. An outcome of our work is the viewpoint that the topological recursion can be used to "topologise" sequences of polynomials, and we claim that the resulting families of polynomials may possess interesting properties. As a further case study, we consider a weighted enumeration of dessins d'enfant and conjecture that the resulting polynomials are also real-rooted and satisfy analogous interlacing properties.

4.Characterization of rings with genus two prime ideal sum graphs

Authors:Praveen Mathil, Jitender Kumar

Abstract: Let $R$ be a commutative ring with unity. The prime ideal sum graph of the ring $R$ is a simple undirected graph whose vertex set is the set of nonzero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacent if and only if $I + J$ is a prime ideal of $R$. In this paper, we characterize all the finite non-local commutative rings whose prime ideal sum graph is of genus $2$.