arXiv daily

Combinatorics (math.CO)

Thu, 20 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Mutual-visibility in distance-hereditary graphs: a linear-time algorithm

Authors:Serafino Cicerone, Gabriele Di Stefano

Abstract: The concept of mutual-visibility in graphs has been recently introduced. If $X$ is a subset of vertices of a graph $G$, then vertices $u$ and $v$ are $X$-visible if there exists a shortest $u,v$-path $P$ such that $V(P)\cap X \subseteq \{u, v\}$. If every two vertices from $X$ are $X$-visible, then $X$ is a mutual-visibility set. The mutual-visibility number of $G$ is the cardinality of a largest mutual-visibility set of $G$. It is known that computing the mutual-visibility number of a graph is NP-complete, whereas it has been shown that there are exact formulas for special graph classes like paths, cycles, blocks, cographs, and grids. In this paper, we study the mutual-visibility in distance-hereditary graphs and show that the mutual-visibility number can be computed in linear time for this class.

2.Expansions of averaged truncations of basic hypergeometric series

Authors:Michael J. Schlosser, Nian Hong Zhou

Abstract: Motivated by recent work of George Andrews and Mircea Merca on the expansion of the quotient of the truncation of Euler's pentagonal number series by the complete series, we provide similar expansion results for averages involving truncations of selected, more general, basic hypergeometric series. In particular, our expansions include new results for averaged truncations of the series appearing in the Jacobi triple product identity, the $q$-Gau{\ss} summation, and the very-well-poised ${}_5\phi_5$ summation. We show how special cases of our expansions can be used to recover various existing results. In addition, we establish new inequalities, such as one for a refinement of the number of partitions into three different colors.

3.Examples and counterexamples in Ehrhart theory

Authors:Luis Ferroni, Akihiro Higashitani

Abstract: This article provides a comprehensive exposition about inequalities that the coefficients of Ehrhart polynomials and $h^*$-polynomials satisfy under various assumptions. We pay particular attention to the properties of Ehrhart positivity as well as unimodality, log-concavity and real-rootedness for $h^*$-polynomials. We survey inequalities that arise when the polytope has different normality properties. We include statements previously unknown in the Ehrhart theory setting, as well as some original contributions in this topic. We address numerous variations of the conjecture asserting that IDP polytopes have a unimodal $h^*$-polynomial, and construct concrete examples that show that these variations of the conjecture are false. Explicit emphasis is put on polytopes arising within algebraic combinatorics. Furthermore, we describe and construct polytopes having pathological properties on their Ehrhart coefficients and roots, and we indicate for the first time a connection between the notions of Ehrhart positivity and $h^*$-real-rootedness. We investigate the log-concavity of the sequence of evaluations of an Ehrhart polynomial at the non-negative integers. We conjecture that IDP polytopes have a log-concave Ehrhart series. Many additional problems and challenges are proposed.

4.Maximal colourings for graphs

Authors:Raffaella Mulas

Abstract: We consider two different notions of graph colouring, namely, the $t$-periodic colouring for vertices that has been introduced in 1974 by Bondy and Simonovits, and the periodic colouring for oriented edges that has been recently introduced in the context of spectral theory of non-backtracking operators. For each of these two colourings, we introduce the corresponding colouring number which is given by maximising the possible number of colours. We first investigate these two new colouring numbers individually, and we then show that there is a deep relationship between them.