arXiv daily

Combinatorics (math.CO)

Wed, 02 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Homological algebra and poset versions of the Garland method

Authors:Eric Babson, Volkmar Welker

Abstract: Garland introduced a vanishing criterion for a characteristic zero cohomology group of a locally finite and locally connected simplicial complex. The criterion is based on the spectral gaps of the graph Laplacians of the links of faces and has turned out to be effective in a wide range of examples. In this note we extend the approach to include a range of non-simplicial (co)chain complexes associated to combinatorial structures we call Garland posets and elaborate further on the case of cubical complexes.

2.Doubly even self-orthogonal codes from quasi-symmetric designs

Authors:Dean Crnković, Doris Dumičić Danilović, Ana Šumberac, Andrea Švob

Abstract: In this paper, we give a construction of doubly even self-orthogonal codes from quasi-symmetric designs. Further, we study orbit matrices of quasi-symmetric designs and give a construction of doubly even self-orthogonal codes from orbit matrices of quasi-symmetric designs of Blokhuis-Haemers type.

3.Stability of Cayley graphs and Schur rings

Authors:Ademir Hujdurović, István Kovács

Abstract: A graph $\Gamma$ is said to be unstable if for the direct product $\Gamma \times K_2$, $Aut(\Gamma \times K_2)$ is not isomorphic to $Aut(\Gamma) \times \mathbb{Z}_2$. In this paper we show that a connected and non-bipartite Cayley graph $Cay(H,S)$ is unstable if and only if the set $S \times \{1\}$ belongs to a Schur ring over the group $H \times \mathbb{Z}_2$ having certain properties. The Schur rings with these properties are characterized if $H$ is an abelian group of odd order or a cyclic group of twice odd order. As an application, a short proof is given for the result of Witte Morris stating that every connected unstable Cayley graph on an abelian group of odd order has twins (Electron.~J.~Combin, 2021). As another application, sufficient and necessary conditions are given for a connected and non-bipartite circulant graph of order $2p^e$ to be unstable, where $p$ is an odd prime and $e \ge 1$.

4.Balanced-chromatic number and Hadwiger-like conjectures

Authors:Andrea Jiménez, Jessica Mcdonald, Reza Naserasr, Kathryn Nurse, Daniel A. Quiroz

Abstract: Motivated by different characterizations of planar graphs and the 4-Color Theorem, several structural results concerning graphs of high chromatic number have been obtained. Toward strengthening some of these results, we consider the \emph{balanced chromatic number}, $\chi_b(\hat{G})$, of a signed graph $\hat{G}$. This is the minimum number of parts into which the vertices of a signed graph can be partitioned so that none of the parts induces a negative cycle. This extends the notion of the chromatic number of a graph since $\chi(G)=\chi_b(\tilde{G})$, where $\tilde{G}$ denotes the signed graph obtained from~$G$ by replacing each edge with a pair of (parallel) positive and negative edges. We introduce a signed version of Hadwiger's conjecture as follows. Conjecture: If a signed graph $\hat{G}$ has no negative loop and no $\tilde{K_t}$-minor, then its balanced chromatic number is at most $t-1$. We prove that this conjecture is, in fact, equivalent to Hadwiger's conjecture and show its relation to the Odd Hadwiger Conjecture. Motivated by these results, we also consider the relation between subdivisions and balanced chromatic number. We prove that if $(G, \sigma)$ has no negative loop and no $\tilde{K_t}$-subdivision, then it admits a balanced $\frac{79}{2}t^2$-coloring. This qualitatively generalizes a result of Kawarabayashi (2013) on totally odd subdivisions.

5.Permutation and local permutation polynomial of maximum degree

Authors:Jaime Gutierrez, Jorge Jimenez Urroz

Abstract: Let $F_q$ be the finite field with $q$ elements and $F_q[x_1,\ldots, x_n]$ the ring of polynomials in $n$ variables over $F_q$. In this paper we consider permutation polynomials and local permutation polynomials over $F_q[x_1,\ldots, x_n]$, which define interesting generalizations of permutations over finite fields. We are able to construct permutation polynomials in $F_q[x_1,\ldots, x_n]$ of maximum degree $n(q-1)-1$ and local permutation polynomials in $F_q[x_1,\ldots, x_n]$ of maximum degree $n(q-2)$ when $q>3$, extending previous results.