arXiv daily

Combinatorics (math.CO)

Wed, 21 Jun 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.On several problems of defective choosability

Authors:Jie Ma, Rongxing Xu, Xuding Zhu

Abstract: Given positive integers $p \ge k$, and a non-negative integer $d$, we say a graph $G$ is $(k,d,p)$-choosable if for every list assignment $L$ with $|L(v)|\geq k$ for each $v \in V(G)$ and $|\bigcup_{v\in V(G)}L(v)| \leq p$, there exists an $L$-coloring of $G$ such that each monochromatic subgraph has maximum degree at most $d$. In particular, $(k,0,k)$-choosable means $k$-colorable, $(k,0,+\infty)$-choosable means $k$-choosable and $(k,d,+\infty)$-choosable means $d$-defective $k$-choosable. This paper proves that there are 3-colorable planar graphs that are not $1$-defective $3$-choosable, there are 1-defective 3-choosable graphs that are not 4-choosable, and for any positive integers $\ell \geq k \geq 3$, and non-negative integer $d$, there are $(k,d, \ell)$-choosable graphs that are not $(k,d , \ell+1)$-choosable. These results answer questions asked by \v{S}krekovski [Combin. Probab. Comput. 8, 3(1999), 293-299], Wang and Xu [SIAM J. Discrete Math. 27, 4(2013), 2020-2037], and Kang [J. Graph Theory 73, 3(2013), 342-353], respectively. Our construction of $(k,d, \ell)$-choosable but not $(k,d , \ell+1)$-choosable graphs generalizes the construction of Kr\'{a}l' and Sgall in [J. Graph Theory 49, 3(2005), 177-186] for the case $d=0$.

2.Cyclic relative difference families with block size four and their applications

Authors:Chenya Zhao, Binwei Zhao, Yanxun Chang, Tao Feng, Xiaomiao Wang, Menglong Zhang

Abstract: Given a subgroup $H$ of a group $(G,+)$, a $(G,H,k,1)$ difference family (DF) is a set $\mathcal F$ of $k$-subsets of $G$ such that $\{f-f':f,f'\in F, f\neq f',F\in \mathcal F\}=G\setminus H$. Let $g\mathbb Z_{gh}$ is the subgroup of order $h$ in $\mathbb Z_{gh}$ generated by $g$. A $(\mathbb Z_{gh},g\mathbb Z_{gh},k,1)$-DF is called cyclic and written as a $(gh,h,k,1)$-CDF. This paper shows that for $h\in\{2,3,6\}$, there exists a $(gh,h,4,1)$-CDF if and only if $gh\equiv h\pmod{12}$, $g\geq 4$ and $(g,h)\not\in\{(9,3),(5,6)\}$. As a corollary, it is shown that a 1-rotational S$(2,4,v)$ exists if and only if $v\equiv4\pmod{12}$ and $v\neq 28$. This solves the long-standing open problem on the existence of a 1-rotational S$(2,4,v)$. As another corollary, we establish the existence of an optimal $(v,4,1)$-optical orthogonal code with $\lfloor(v-1)/12\rfloor$ codewords for any positive integer $v\equiv 1,2,3,4,6\pmod{12}$ and $v\neq 25$. We also give applications of our results to cyclic group divisible designs with block size four and optimal cyclic $3$-ary constant-weight codes with weight four and minimum distance six.