Chain-of-Choice Hierarchical Policy Learning for Conversational
  Recommendation

By: Wei Fan, Weijia Zhang, Weiqi Wang, Yangqiu Song, Hao Liu

Conversational Recommender Systems (CRS) illuminate user preferences via multi-round interactive dialogues, ultimately navigating towards precise and satisfactory recommendations. However, contemporary CRS are limited to inquiring binary or multi-choice questions based on a single attribute type (e.g., color) per round, which causes excessive rounds of interaction and diminishes the user's experience. To address this, we propose a more real... more
Conversational Recommender Systems (CRS) illuminate user preferences via multi-round interactive dialogues, ultimately navigating towards precise and satisfactory recommendations. However, contemporary CRS are limited to inquiring binary or multi-choice questions based on a single attribute type (e.g., color) per round, which causes excessive rounds of interaction and diminishes the user's experience. To address this, we propose a more realistic and efficient conversational recommendation problem setting, called Multi-Type-Attribute Multi-round Conversational Recommendation (MTAMCR), which enables CRS to inquire about multi-choice questions covering multiple types of attributes in each round, thereby improving interactive efficiency. Moreover, by formulating MTAMCR as a hierarchical reinforcement learning task, we propose a Chain-of-Choice Hierarchical Policy Learning (CoCHPL) framework to enhance both the questioning efficiency and recommendation effectiveness in MTAMCR. Specifically, a long-term policy over options (i.e., ask or recommend) determines the action type, while two short-term intra-option policies sequentially generate the chain of attributes or items through multi-step reasoning and selection, optimizing the diversity and interdependence of questioning attributes. Finally, extensive experiments on four benchmarks demonstrate the superior performance of CoCHPL over prevailing state-of-the-art methods. less
Text2Bundle: Towards Personalized Query-based Bundle Generation

By: Shixuan Zhu, Chuan Cui, JunTong Hu, Qi Shen, Yu Ji, Zhihua Wei

Bundle generation aims to provide a bundle of items for the user, and has been widely studied and applied on online service platforms. Existing bundle generation methods mainly utilized user's preference from historical interactions in common recommendation paradigm, and ignored the potential textual query which is user's current explicit intention. There can be a scenario in which a user proactively queries a bundle with some natural langu... more
Bundle generation aims to provide a bundle of items for the user, and has been widely studied and applied on online service platforms. Existing bundle generation methods mainly utilized user's preference from historical interactions in common recommendation paradigm, and ignored the potential textual query which is user's current explicit intention. There can be a scenario in which a user proactively queries a bundle with some natural language description, the system should be able to generate a bundle that exactly matches the user's intention through the user's query and preferences. In this work, we define this user-friendly scenario as Query-based Bundle Generation task and propose a novel framework Text2Bundle that leverages both the user's short-term interests from the query and the user's long-term preferences from the historical interactions. Our framework consists of three modules: (1) a query interest extractor that mines the user's fine-grained interests from the query; (2) a unified state encoder that learns the current bundle context state and the user's preferences based on historical interaction and current query; and (3) a bundle generator that generates personalized and complementary bundles using a reinforcement learning with specifically designed rewards. We conduct extensive experiments on three real-world datasets and demonstrate the effectiveness of our framework compared with several state-of-the-art methods. less
FMMRec: Fairness-aware Multimodal Recommendation

By: Weixin Chen, Li Chen, Yongxin Ni, Yuhan Zhao, Fajie Yuan, Yongfeng Zhang

Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness iss... more
Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec. less
LightLM: A Lightweight Deep and Narrow Language Model for Generative
  Recommendation

By: Kai Mei, Yongfeng Zhang

This paper presents LightLM, a lightweight Transformer-based language model for generative recommendation. While Transformer-based generative modeling has gained importance in various AI sub-fields such as NLP and vision, generative recommendation is still in its infancy due to its unique demand on personalized generative modeling. Existing works on generative recommendation often use NLP-oriented Transformer architectures such as T5, GPT, ... more
This paper presents LightLM, a lightweight Transformer-based language model for generative recommendation. While Transformer-based generative modeling has gained importance in various AI sub-fields such as NLP and vision, generative recommendation is still in its infancy due to its unique demand on personalized generative modeling. Existing works on generative recommendation often use NLP-oriented Transformer architectures such as T5, GPT, LLaMA and M6, which are heavy-weight and are not specifically designed for recommendation tasks. LightLM tackles the issue by introducing a light-weight deep and narrow Transformer architecture, which is specifically tailored for direct generation of recommendation items. This structure is especially apt for straightforward generative recommendation and stems from the observation that language model does not have to be too wide for this task, as the input predominantly consists of short tokens that are well-suited for the model's capacity. We also show that our devised user and item ID indexing methods, i.e., Spectral Collaborative Indexing (SCI) and Graph Collaborative Indexing (GCI), enables the deep and narrow Transformer architecture to outperform large-scale language models for recommendation. Besides, to address the hallucination problem of generating items as output, we propose the constrained generation process for generative recommenders. Experiments on real-world datasets show that LightLM outperforms various competitive baselines in terms of both recommendation accuracy and efficiency. The code can be found at https://github.com/dongyuanjushi/LightLM. less
Multiple Key-value Strategy in Recommendation Systems Incorporating
  Large Language Model

By: Dui Wang, Xiangyu Hou, Xiaohui Yang, Bo Zhang, Renbing Chen, Daiyue Xue

Recommendation system (RS) plays significant roles in matching users information needs for Internet applications, and it usually utilizes the vanilla neural network as the backbone to handle embedding details. Recently, the large language model (LLM) has exhibited emergent abilities and achieved great breakthroughs both in the CV and NLP communities. Thus, it is logical to incorporate RS with LLM better, which has become an emerging researc... more
Recommendation system (RS) plays significant roles in matching users information needs for Internet applications, and it usually utilizes the vanilla neural network as the backbone to handle embedding details. Recently, the large language model (LLM) has exhibited emergent abilities and achieved great breakthroughs both in the CV and NLP communities. Thus, it is logical to incorporate RS with LLM better, which has become an emerging research direction. Although some existing works have made their contributions to this issue, they mainly consider the single key situation (e.g. historical interactions), especially in sequential recommendation. The situation of multiple key-value data is simply neglected. This significant scenario is mainstream in real practical applications, where the information of users (e.g. age, occupation, etc) and items (e.g. title, category, etc) has more than one key. Therefore, we aim to implement sequential recommendations based on multiple key-value data by incorporating RS with LLM. In particular, we instruct tuning a prevalent open-source LLM (Llama 7B) in order to inject domain knowledge of RS into the pre-trained LLM. Since we adopt multiple key-value strategies, LLM is hard to learn well among these keys. Thus the general and innovative shuffle and mask strategies, as an innovative manner of data argument, are designed. To demonstrate the effectiveness of our approach, extensive experiments are conducted on the popular and suitable dataset MovieLens which contains multiple keys-value. The experimental results demonstrate that our approach can nicely and effectively complete this challenging issue. less
Faithful Path Language Modelling for Explainable Recommendation over
  Knowledge Graph

By: Giacomo Balloccu, Ludovico Boratto, Christian Cancedda, Gianni Fenu, Mirko Marras

Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures ... more
Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED. less
Model-enhanced Contrastive Reinforcement Learning for Sequential
  Recommendation

By: Chengpeng Li, Zhengyi Yang, Jizhi Zhang, Jiancan Wu, Dingxian Wang, Xiangnan He, Xiang Wang

Reinforcement learning (RL) has been widely applied in recommendation systems due to its potential in optimizing the long-term engagement of users. From the perspective of RL, recommendation can be formulated as a Markov decision process (MDP), where recommendation system (agent) can interact with users (environment) and acquire feedback (reward signals).However, it is impractical to conduct online interactions with the concern on user expe... more
Reinforcement learning (RL) has been widely applied in recommendation systems due to its potential in optimizing the long-term engagement of users. From the perspective of RL, recommendation can be formulated as a Markov decision process (MDP), where recommendation system (agent) can interact with users (environment) and acquire feedback (reward signals).However, it is impractical to conduct online interactions with the concern on user experience and implementation complexity, and we can only train RL recommenders with offline datasets containing limited reward signals and state transitions. Therefore, the data sparsity issue of reward signals and state transitions is very severe, while it has long been overlooked by existing RL recommenders.Worse still, RL methods learn through the trial-and-error mode, but negative feedback cannot be obtained in implicit feedback recommendation tasks, which aggravates the overestimation problem of offline RL recommender. To address these challenges, we propose a novel RL recommender named model-enhanced contrastive reinforcement learning (MCRL). On the one hand, we learn a value function to estimate the long-term engagement of users, together with a conservative value learning mechanism to alleviate the overestimation problem.On the other hand, we construct some positive and negative state-action pairs to model the reward function and state transition function with contrastive learning to exploit the internal structure information of MDP. Experiments demonstrate that the proposed method significantly outperforms existing offline RL and self-supervised RL methods with different representative backbone networks on two real-world datasets. less
Distributionally Robust Unsupervised Dense Retrieval Training on Web
  Graphs

By: Peixuan Han, Zhenghao Liu, Zhiyuan Liu, Chenyan Xiong

This paper introduces Web-DRO, an unsupervised dense retrieval model, which clusters documents based on web structures and reweights the groups during contrastive training. Specifically, we first leverage web graph links and contrastively train an embedding model for clustering anchor-document pairs. Then we use Group Distributional Robust Optimization to reweight different clusters of anchor-document pairs, which guides the model to assign... more
This paper introduces Web-DRO, an unsupervised dense retrieval model, which clusters documents based on web structures and reweights the groups during contrastive training. Specifically, we first leverage web graph links and contrastively train an embedding model for clustering anchor-document pairs. Then we use Group Distributional Robust Optimization to reweight different clusters of anchor-document pairs, which guides the model to assign more weights to the group with higher contrastive loss and pay more attention to the worst case during training. Our experiments on MS MARCO and BEIR show that our model, Web-DRO, significantly improves the retrieval effectiveness in unsupervised scenarios. A comparison of clustering techniques shows that training on the web graph combining URL information reaches optimal performance on clustering. Further analysis confirms that group weights are stable and valid, indicating consistent model preferences as well as effective up-weighting of valuable groups and down-weighting of uninformative ones. The code of this paper can be obtained from https://github.com/OpenMatch/Web-DRO. less
Large Search Model: Redefining Search Stack in the Era of LLMs

By: Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei

Modern search engines are built on a stack of different components, including query understanding, retrieval, multi-stage ranking, and question answering, among others. These components are often optimized and deployed independently. In this paper, we introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM). All tasks are form... more
Modern search engines are built on a stack of different components, including query understanding, retrieval, multi-stage ranking, and question answering, among others. These components are often optimized and deployed independently. In this paper, we introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM). All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts. This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack. To substantiate the feasibility of this framework, we present a series of proof-of-concept experiments and discuss the potential challenges associated with implementing this approach within real-world search systems. less
Budgeted Embedding Table For Recommender Systems

By: Yunke Qu, Tong Chen, Quoc Viet Hung Nguyen, Hongzhi Yin

At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diver... more
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets. less