An Energy-Efficient Near-Data Processing Accelerator for DNNs that
  Optimizes Data Accesses

By: Bahareh Khabbazan, Marc Riera, Antonio González

The constant growth of DNNs makes them challenging to implement and run efficiently on traditional compute-centric architectures. Some accelerators have attempted to add more compute units and on-chip buffers to solve the memory wall problem without much success, and sometimes even worsening the issue since more compute units also require higher memory bandwidth. Prior works have proposed the design of memory-centric architectures based on ... more
The constant growth of DNNs makes them challenging to implement and run efficiently on traditional compute-centric architectures. Some accelerators have attempted to add more compute units and on-chip buffers to solve the memory wall problem without much success, and sometimes even worsening the issue since more compute units also require higher memory bandwidth. Prior works have proposed the design of memory-centric architectures based on the Near-Data Processing (NDP) paradigm. NDP seeks to break the memory wall by moving the computations closer to the memory hierarchy, reducing the data movements and their cost as much as possible. The 3D-stacked memory is especially appealing for DNN accelerators due to its high-density/low-energy storage and near-memory computation capabilities to perform the DNN operations massively in parallel. However, memory accesses remain as the main bottleneck for running modern DNNs efficiently. To improve the efficiency of DNN inference we present QeiHaN, a hardware accelerator that implements a 3D-stacked memory-centric weight storage scheme to take advantage of a logarithmic quantization of activations. In particular, since activations of FC and CONV layers of modern DNNs are commonly represented as powers of two with negative exponents, QeiHaN performs an implicit in-memory bit-shifting of the DNN weights to reduce memory activity. Only the meaningful bits of the weights required for the bit-shift operation are accessed. Overall, QeiHaN reduces memory accesses by 25\% compared to a standard memory organization. We evaluate QeiHaN on a popular set of DNNs. On average, QeiHaN provides $4.3x$ speedup and $3.5x$ energy savings over a Neurocube-like accelerator. less
Design Space Exploration of Sparsity-Aware Application-Specific Spiking
  Neural Network Accelerators

By: Ilkin Aliyev. Kama Svoboda, Tosiron Adegbija

Spiking Neural Networks (SNNs) offer a promising alternative to Artificial Neural Networks (ANNs) for deep learning applications, particularly in resource-constrained systems. This is largely due to their inherent sparsity, influenced by factors such as the input dataset, the length of the spike train, and the network topology. While a few prior works have demonstrated the advantages of incorporating sparsity into the hardware design, espec... more
Spiking Neural Networks (SNNs) offer a promising alternative to Artificial Neural Networks (ANNs) for deep learning applications, particularly in resource-constrained systems. This is largely due to their inherent sparsity, influenced by factors such as the input dataset, the length of the spike train, and the network topology. While a few prior works have demonstrated the advantages of incorporating sparsity into the hardware design, especially in terms of reducing energy consumption, the impact on hardware resources has not yet been explored. This is where design space exploration (DSE) becomes crucial, as it allows for the optimization of hardware performance by tailoring both the hardware and model parameters to suit specific application needs. However, DSE can be extremely challenging given the potentially large design space and the interplay of hardware architecture design choices and application-specific model parameters. In this paper, we propose a flexible hardware design that leverages the sparsity of SNNs to identify highly efficient, application-specific accelerator designs. We develop a high-level, cycle-accurate simulation framework for this hardware and demonstrate the framework's benefits in enabling detailed and fine-grained exploration of SNN design choices, such as the layer-wise logical-to-hardware ratio (LHR). Our experimental results show that our design can (i) achieve up to $76\%$ reduction in hardware resources and (ii) deliver a speed increase of up to $31.25\times$, while requiring $27\%$ fewer hardware resources compared to sparsity-oblivious designs. We further showcase the robustness of our framework by varying spike train lengths with different neuron population sizes to find the optimal trade-off points between accuracy and hardware latency. less
Analytical Die-to-Die 3D Placement with Bistratal Wirelength Model and
  GPU Acceleration

By: Peiyu Liao, Yuxuan Zhao, Dawei Guo, Yibo Lin, Bei Yu

In this paper, we present a new analytical 3D placement framework with a bistratal wirelength model for F2F-bonded 3D ICs with heterogeneous technology nodes based on the electrostatic-based density model. The proposed framework, enabled GPU-acceleration, is capable of efficiently determining node partitioning and locations simultaneously, leveraging the dedicated 3D wirelength model and density model. The experimental results on ICCAD 2022... more
In this paper, we present a new analytical 3D placement framework with a bistratal wirelength model for F2F-bonded 3D ICs with heterogeneous technology nodes based on the electrostatic-based density model. The proposed framework, enabled GPU-acceleration, is capable of efficiently determining node partitioning and locations simultaneously, leveraging the dedicated 3D wirelength model and density model. The experimental results on ICCAD 2022 contest benchmarks demonstrate that our proposed 3D placement framework can achieve up to 6.1% wirelength improvement and 4.1% on average compared to the first-place winner with much fewer vertical interconnections and up to 9.8x runtime speedup. Notably, the proposed framework also outperforms the state-of-the-art 3D analytical placer by up to 3.3% wirelength improvement and 2.1% on average with up to 8.8x acceleration on large cases using GPUs. less
MEDUSA: Scalable Biometric Sensing in the Wild through Distributed MIMO
  Radars

By: Yilong Li, Ramanujan K Sheshadri, Karthik Sundaresan, Eugene Chai, Suman Banerjee

Radar-based techniques for detecting vital signs have shown promise for continuous contactless vital sign sensing and healthcare applications. However, real-world indoor environments face significant challenges for existing vital sign monitoring systems. These include signal blockage in non-line-of-sight (NLOS) situations, movement of human subjects, and alterations in location and orientation. Additionally, these existing systems failed to... more
Radar-based techniques for detecting vital signs have shown promise for continuous contactless vital sign sensing and healthcare applications. However, real-world indoor environments face significant challenges for existing vital sign monitoring systems. These include signal blockage in non-line-of-sight (NLOS) situations, movement of human subjects, and alterations in location and orientation. Additionally, these existing systems failed to address the challenge of tracking multiple targets simultaneously. To overcome these challenges, we present MEDUSA, a novel coherent ultra-wideband (UWB) based distributed multiple-input multiple-output (MIMO) radar system, especially it allows users to customize and disperse the $16 \times 16$ into sub-arrays. MEDUSA takes advantage of the diversity benefits of distributed yet wirelessly synchronized MIMO arrays to enable robust vital sign monitoring in real-world and daily living environments where human targets are moving and surrounded by obstacles. We've developed a scalable, self-supervised contrastive learning model which integrates seamlessly with our hardware platform. Each attention weight within the model corresponds to a specific antenna pair of Tx and Rx. The model proficiently recovers accurate vital sign waveforms by decomposing and correlating the mixed received signals, including comprising human motion, mobility, noise, and vital signs. Through extensive evaluations involving 21 participants and over 200 hours of collected data (3.75 TB in total, with 1.89 TB for static subjects and 1.86 TB for moving subjects), MEDUSA's performance has been validated, showing an average gain of 20% compared to existing systems employing COTS radar sensors. This demonstrates MEDUSA's spatial diversity gain for real-world vital sign monitoring, encompassing target and environmental dynamics in familiar and unfamiliar indoor environments. less
Victima: Drastically Increasing Address Translation Reach by Leveraging
  Underutilized Cache Resources

By: Konstantinos Kanellopoulos, Hong Chul Nam, F. Nisa Bostanci, Rahul Bera, Mohammad Sadrosadati, Rakesh Kumar, Davide-Basilio Bartolini, Onur Mutlu

Address translation is a performance bottleneck in data-intensive workloads due to large datasets and irregular access patterns that lead to frequent high-latency page table walks (PTWs). PTWs can be reduced by using (i) large hardware TLBs or (ii) large software-managed TLBs. Unfortunately, both solutions have significant drawbacks: increased access latency, power and area (for hardware TLBs), and costly memory accesses, the need for large... more
Address translation is a performance bottleneck in data-intensive workloads due to large datasets and irregular access patterns that lead to frequent high-latency page table walks (PTWs). PTWs can be reduced by using (i) large hardware TLBs or (ii) large software-managed TLBs. Unfortunately, both solutions have significant drawbacks: increased access latency, power and area (for hardware TLBs), and costly memory accesses, the need for large contiguous memory blocks, and complex OS modifications (for software-managed TLBs). We present Victima, a new software-transparent mechanism that drastically increases the translation reach of the processor by leveraging the underutilized resources of the cache hierarchy. The key idea of Victima is to repurpose L2 cache blocks to store clusters of TLB entries, thereby providing an additional low-latency and high-capacity component that backs up the last-level TLB and thus reduces PTWs. Victima has two main components. First, a PTW cost predictor (PTW-CP) identifies costly-to-translate addresses based on the frequency and cost of the PTWs they lead to. Second, a TLB-aware cache replacement policy prioritizes keeping TLB entries in the cache hierarchy by considering (i) the translation pressure (e.g., last-level TLB miss rate) and (ii) the reuse characteristics of the TLB entries. Our evaluation results show that in native (virtualized) execution environments Victima improves average end-to-end application performance by 7.4% (28.7%) over the baseline four-level radix-tree-based page table design and by 6.2% (20.1%) over a state-of-the-art software-managed TLB, across 11 diverse data-intensive workloads. Victima (i) is effective in both native and virtualized environments, (ii) is completely transparent to application and system software, and (iii) incurs very small area and power overheads on a modern high-end CPU. less
Swordfish: A Framework for Evaluating Deep Neural Network-based
  Basecalling using Computation-In-Memory with Non-Ideal Memristors

By: Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can Firtina, Stephan Wong, Onur Mutlu, Said Hamdioui

Basecalling, an essential step in many genome analysis studies, relies on large Deep Neural Networks (DNNs) to achieve high accuracy. Unfortunately, these DNNs are computationally slow and inefficient, leading to considerable delays and resource constraints in the sequence analysis process. A Computation-In-Memory (CIM) architecture using memristors can significantly accelerate the performance of DNNs. However, inherent device non-idealitie... more
Basecalling, an essential step in many genome analysis studies, relies on large Deep Neural Networks (DNNs) to achieve high accuracy. Unfortunately, these DNNs are computationally slow and inefficient, leading to considerable delays and resource constraints in the sequence analysis process. A Computation-In-Memory (CIM) architecture using memristors can significantly accelerate the performance of DNNs. However, inherent device non-idealities and architectural limitations of such designs can greatly degrade the basecalling accuracy, which is critical for accurate genome analysis. To facilitate the adoption of memristor-based CIM designs for basecalling, it is important to (1) conduct a comprehensive analysis of potential CIM architectures and (2) develop effective strategies for mitigating the possible adverse effects of inherent device non-idealities and architectural limitations. This paper proposes Swordfish, a novel hardware/software co-design framework that can effectively address the two aforementioned issues. Swordfish incorporates seven circuit and device restrictions or non-idealities from characterized real memristor-based chips. Swordfish leverages various hardware/software co-design solutions to mitigate the basecalling accuracy loss due to such non-idealities. To demonstrate the effectiveness of Swordfish, we take Bonito, the state-of-the-art (i.e., accurate and fast), open-source basecaller as a case study. Our experimental results using Sword-fish show that a CIM architecture can realistically accelerate Bonito for a wide range of real datasets by an average of 25.7x, with an accuracy loss of 6.01%. less
Co-Optimizing Cache Partitioning and Multi-Core Task Scheduling: Exploit
  Cache Sensitivity or Not?

By: Binqi Sun, Debayan Roy, Tomasz Kloda, Andrea Bastoni, Rodolfo Pellizzoni, Marco Caccamo

Cache partitioning techniques have been successfully adopted to mitigate interference among concurrently executing real-time tasks on multi-core processors. Considering that the execution time of a cache-sensitive task strongly depends on the cache available for it to use, co-optimizing cache partitioning and task allocation improves the system's schedulability. In this paper, we propose a hybrid multi-layer design space exploration techniq... more
Cache partitioning techniques have been successfully adopted to mitigate interference among concurrently executing real-time tasks on multi-core processors. Considering that the execution time of a cache-sensitive task strongly depends on the cache available for it to use, co-optimizing cache partitioning and task allocation improves the system's schedulability. In this paper, we propose a hybrid multi-layer design space exploration technique to solve this multi-resource management problem. We explore the interplay between cache partitioning and schedulability by systematically interleaving three optimization layers, viz., (i) in the outer layer, we perform a breadth-first search combined with proactive pruning for cache partitioning; (ii) in the middle layer, we exploit a first-fit heuristic for allocating tasks to cores; and (iii) in the inner layer, we use the well-known recurrence relation for the schedulability analysis of non-preemptive fixed-priority (NP-FP) tasks in a uniprocessor setting. Although our focus is on NP-FP scheduling, we evaluate the flexibility of our framework in supporting different scheduling policies (NP-EDF, P-EDF) by plugging in appropriate analysis methods in the inner layer. Experiments show that, compared to the state-of-the-art techniques, the proposed framework can improve the real-time schedulability of NP-FP task sets by an average of 15.2% with a maximum improvement of 233.6% (when tasks are highly cache-sensitive) and a minimum of 1.6% (when cache sensitivity is low). For such task sets, we found that clustering similar-period (or mutually compatible) tasks often leads to higher schedulability (on average 7.6%) than clustering by cache sensitivity. In our evaluation, the framework also achieves good results for preemptive and dynamic-priority scheduling policies. less
SimplePIM: A Software Framework for Productive and Efficient
  Processing-in-Memory

By: Jinfan Chen, Juan Gómez-Luna, Izzat El Hajj, Yuxin Guo, Onur Mutlu

Data movement between memory and processors is a major bottleneck in modern computing systems. The processing-in-memory (PIM) paradigm aims to alleviate this bottleneck by performing computation inside memory chips. Real PIM hardware (e.g., the UPMEM system) is now available and has demonstrated potential in many applications. However, programming such real PIM hardware remains a challenge for many programmers. This paper presents a new s... more
Data movement between memory and processors is a major bottleneck in modern computing systems. The processing-in-memory (PIM) paradigm aims to alleviate this bottleneck by performing computation inside memory chips. Real PIM hardware (e.g., the UPMEM system) is now available and has demonstrated potential in many applications. However, programming such real PIM hardware remains a challenge for many programmers. This paper presents a new software framework, SimplePIM, to aid programming real PIM systems. The framework processes arrays of arbitrary elements on a PIM device by calling iterator functions from the host and provides primitives for communication among PIM cores and between PIM and the host system. We implement SimplePIM for the UPMEM PIM system and evaluate it on six major applications. Our results show that SimplePIM enables 66.5% to 83.1% reduction in lines of code in PIM programs. The resulting code leads to higher performance (between 10% and 37% speedup) than hand-optimized code in three applications and provides comparable performance in three others. SimplePIM is fully and freely available at https://github.com/CMU-SAFARI/SimplePIM. less
Trikarenos: A Fault-Tolerant RISC-V-based Microcontroller for CubeSats
  in 28nm

By: Michael Rogenmoser, Luca Benini

One of the key challenges when operating microcontrollers in harsh environments such as space is radiation-induced Single Event Upsets (SEUs), which can lead to errors in computation. Common countermeasures rely on proprietary radiation-hardened technologies, low density technologies, or extensive replication, leading to high costs and low performance and efficiency. To combat this, we present Trikarenos, a fault-tolerant 32-bit RISC-V micr... more
One of the key challenges when operating microcontrollers in harsh environments such as space is radiation-induced Single Event Upsets (SEUs), which can lead to errors in computation. Common countermeasures rely on proprietary radiation-hardened technologies, low density technologies, or extensive replication, leading to high costs and low performance and efficiency. To combat this, we present Trikarenos, a fault-tolerant 32-bit RISC-V microcontroller SoC in an advanced TSMC 28nm technology. Trikarenos alleviates the replication cost by employing a configurable triple-core lockstep configuration, allowing three Ibex cores to execute applications reliably, operating on ECC-protected memory. If reliability is not needed for a given application, the cores can operate independently in parallel for higher performance and efficiency. Trikarenos consumes 15.7mW at 250MHz executing a fault-tolerant matrix-matrix multiplication, a 21.5x efficiency gain over state-of-the-art, and performance is increased by 2.96x when reliability is not needed for processing, with a 2.36x increase in energy efficiency. less
GateSeeder: Near-memory CPU-FPGA Acceleration of Short and Long Read
  Mapping

By: Julien Eudine, Mohammed Alser, Gagandeep Singh, Can Alkan, Onur Mutlu

Motivation: Read mapping is a computationally expensive process and a major bottleneck in genomics analyses. The performance of read mapping is mainly limited by the performance of three key computational steps: Index Querying, Seed Chaining, and Sequence Alignment. The first step is dominated by how fast and frequent it accesses the main memory (i.e., memory-bound), while the latter two steps are dominated by how fast the CPU can compute t... more
Motivation: Read mapping is a computationally expensive process and a major bottleneck in genomics analyses. The performance of read mapping is mainly limited by the performance of three key computational steps: Index Querying, Seed Chaining, and Sequence Alignment. The first step is dominated by how fast and frequent it accesses the main memory (i.e., memory-bound), while the latter two steps are dominated by how fast the CPU can compute their computationally-costly dynamic programming algorithms (i.e., compute-bound). Accelerating these three steps by exploiting new algorithms and new hardware devices is essential to accelerate most genome analysis pipelines that widely use read mapping. Given the large body of work on accelerating Sequence Alignment, this work focuses on significantly improving the remaining steps. Results: We introduce GateSeeder, the first CPU-FPGA-based near-memory acceleration of both short and long read mapping. GateSeeder exploits near-memory computation capability provided by modern FPGAs that couple a reconfigurable compute fabric with high-bandwidth memory (HBM) to overcome the memory-bound and compute-bound bottlenecks. GateSeeder also introduces a new lightweight algorithm for finding the potential matching segment pairs. Using real ONT, HiFi, and Illumina sequences, we experimentally demonstrate that GateSeeder outperforms Minimap2, without performing sequence alignment, by up to 40.3x, 4.8x, and 2.3x, respectively. When performing read mapping with sequence alignment, GateSeeder outperforms Minimap2 by 1.15-4.33x (using KSW2) and by 1.97-13.63x (using WFA-GPU). Availability: https://github.com/CMU-SAFARI/GateSeeder less