Co-Optimizing Cache Partitioning and Multi-Core Task Scheduling: Exploit Cache Sensitivity or Not?

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Co-Optimizing Cache Partitioning and Multi-Core Task Scheduling: Exploit Cache Sensitivity or Not?

Authors

Binqi Sun, Debayan Roy, Tomasz Kloda, Andrea Bastoni, Rodolfo Pellizzoni, Marco Caccamo

Abstract

Cache partitioning techniques have been successfully adopted to mitigate interference among concurrently executing real-time tasks on multi-core processors. Considering that the execution time of a cache-sensitive task strongly depends on the cache available for it to use, co-optimizing cache partitioning and task allocation improves the system's schedulability. In this paper, we propose a hybrid multi-layer design space exploration technique to solve this multi-resource management problem. We explore the interplay between cache partitioning and schedulability by systematically interleaving three optimization layers, viz., (i) in the outer layer, we perform a breadth-first search combined with proactive pruning for cache partitioning; (ii) in the middle layer, we exploit a first-fit heuristic for allocating tasks to cores; and (iii) in the inner layer, we use the well-known recurrence relation for the schedulability analysis of non-preemptive fixed-priority (NP-FP) tasks in a uniprocessor setting. Although our focus is on NP-FP scheduling, we evaluate the flexibility of our framework in supporting different scheduling policies (NP-EDF, P-EDF) by plugging in appropriate analysis methods in the inner layer. Experiments show that, compared to the state-of-the-art techniques, the proposed framework can improve the real-time schedulability of NP-FP task sets by an average of 15.2% with a maximum improvement of 233.6% (when tasks are highly cache-sensitive) and a minimum of 1.6% (when cache sensitivity is low). For such task sets, we found that clustering similar-period (or mutually compatible) tasks often leads to higher schedulability (on average 7.6%) than clustering by cache sensitivity. In our evaluation, the framework also achieves good results for preemptive and dynamic-priority scheduling policies.

Follow Us on

0 comments

Add comment