By: Baskoro Adi Pratomo, Toby Jackson, Pete Burnap, Andrew Hood, Eirini Anthi
Analysing malware is important to understand how malicious software works and to develop appropriate detection and prevention methods. Dynamic analysis can overcome evasion techniques commonly used to bypass static analysis and provide insights into malware runtime activities. Much research on dynamic analysis focused on investigating machine-level information (e.g., CPU, memory, network usage) to identify whether a machine is running malic... more
Analysing malware is important to understand how malicious software works and to develop appropriate detection and prevention methods. Dynamic analysis can overcome evasion techniques commonly used to bypass static analysis and provide insights into malware runtime activities. Much research on dynamic analysis focused on investigating machine-level information (e.g., CPU, memory, network usage) to identify whether a machine is running malicious activities. A malicious machine does not necessarily mean all running processes on the machine are also malicious. If we can isolate the malicious process instead of isolating the whole machine, we could kill the malicious process, and the machine can keep doing its job. Another challenge dynamic malware detection research faces is that the samples are executed in one machine without any background applications running. It is unrealistic as a computer typically runs many benign (background) applications when a malware incident happens. Our experiment with machine-level data shows that the existence of background applications decreases previous state-of-the-art accuracy by about 20.12% on average. We also proposed a process-level Recurrent Neural Network (RNN)-based detection model. Our proposed model performs better than the machine-level detection model; 0.049 increase in detection rate and a false-positive rate below 0.1. less
By: Bryan Kumara, Mark Hooper, Carsten Maple, Timothy Hobson, Jon Crowcroft
Redactable signature schemes and sanitizable signature schemes are methods that permit modification of a given digital message and retain a valid signature. This can be applied to decentralized identity systems for delegating identity issuance and redacting sensitive information for privacy-preserving verification of identity. We propose implementing these protocols on a digital credential and compare them against other privacy-enhancing te... more
Redactable signature schemes and sanitizable signature schemes are methods that permit modification of a given digital message and retain a valid signature. This can be applied to decentralized identity systems for delegating identity issuance and redacting sensitive information for privacy-preserving verification of identity. We propose implementing these protocols on a digital credential and compare them against other privacy-enhancing techniques to assess their suitability less
By: Fnu Suya, Anshuman Suri, Tingwei Zhang, Jingtao Hong, Yuan Tian, David Evans
Numerous works study black-box attacks on image classifiers. However, these works make different assumptions on the adversary's knowledge and current literature lacks a cohesive organization centered around the threat model. To systematize knowledge in this area, we propose a taxonomy over the threat space spanning the axes of feedback granularity, the access of interactive queries, and the quality and quantity of the auxiliary data availab... more
Numerous works study black-box attacks on image classifiers. However, these works make different assumptions on the adversary's knowledge and current literature lacks a cohesive organization centered around the threat model. To systematize knowledge in this area, we propose a taxonomy over the threat space spanning the axes of feedback granularity, the access of interactive queries, and the quality and quantity of the auxiliary data available to the attacker. Our new taxonomy provides three key insights. 1) Despite extensive literature, numerous under-explored threat spaces exist, which cannot be trivially solved by adapting techniques from well-explored settings. We demonstrate this by establishing a new state-of-the-art in the less-studied setting of access to top-k confidence scores by adapting techniques from well-explored settings of accessing the complete confidence vector, but show how it still falls short of the more restrictive setting that only obtains the prediction label, highlighting the need for more research. 2) Identification the threat model of different attacks uncovers stronger baselines that challenge prior state-of-the-art claims. We demonstrate this by enhancing an initially weaker baseline (under interactive query access) via surrogate models, effectively overturning claims in the respective paper. 3) Our taxonomy reveals interactions between attacker knowledge that connect well to related areas, such as model inversion and extraction attacks. We discuss how advances in other areas can enable potentially stronger black-box attacks. Finally, we emphasize the need for a more realistic assessment of attack success by factoring in local attack runtime. This approach reveals the potential for certain attacks to achieve notably higher success rates and the need to evaluate attacks in diverse and harder settings, highlighting the need for better selection criteria. less
Static Semantics Reconstruction for Enhancing JavaScript-WebAssembly Multilingual Malware Detection
0upvotes
By: Yifan Xia, Ping He, Xuhong Zhang, Peiyu Liu, Shouling Ji, Wenhai Wang
The emergence of WebAssembly allows attackers to hide the malicious functionalities of JavaScript malware in cross-language interoperations, termed JavaScript-WebAssembly multilingual malware (JWMM). However, existing anti-virus solutions based on static program analysis are still limited to monolingual code. As a result, their detection effectiveness decreases significantly against JWMM. The detection of JWMM is challenging due to the comp... more
The emergence of WebAssembly allows attackers to hide the malicious functionalities of JavaScript malware in cross-language interoperations, termed JavaScript-WebAssembly multilingual malware (JWMM). However, existing anti-virus solutions based on static program analysis are still limited to monolingual code. As a result, their detection effectiveness decreases significantly against JWMM. The detection of JWMM is challenging due to the complex interoperations and semantic diversity between JavaScript and WebAssembly. To bridge this gap, we present JWBinder, the first technique aimed at enhancing the static detection of JWMM. JWBinder performs a language-specific data-flow analysis to capture the cross-language interoperations and then characterizes the functionalities of JWMM through a unified high-level structure called Inter-language Program Dependency Graph. The extensive evaluation on one of the most representative real-world anti-virus platforms, VirusTotal, shows that \system effectively enhances anti-virus systems from various vendors and increases the overall successful detection rate against JWMM from 49.1\% to 86.2\%. Additionally, we assess the side effects and runtime overhead of JWBinder, corroborating its practical viability in real-world applications. less
By: Xiang Li, Jing Zhang, Yali Yuan, Cangqi Zhou
A network intrusion usually involves a number of network locations. Data flow (including the data generated by intrusion behaviors) among these locations (usually represented by IP addresses) naturally forms a graph. Thus, graph neural networks (GNNs) have been used in the construction of intrusion detection models in recent years since they have an excellent ability to capture graph topological features of intrusion data flow. However, exi... more
A network intrusion usually involves a number of network locations. Data flow (including the data generated by intrusion behaviors) among these locations (usually represented by IP addresses) naturally forms a graph. Thus, graph neural networks (GNNs) have been used in the construction of intrusion detection models in recent years since they have an excellent ability to capture graph topological features of intrusion data flow. However, existing GNN models treat node mean aggregation equally in node information aggregation. In reality, the correlations of nodes and their neighbors as well as the linked edges are different. Assigning higher weights to nodes and edges with high similarity can highlight the correlation among them, which will enhance the accuracy and expressiveness of the model. To this end, this paper proposes novel Edge-Directed Graph Multi-Head Attention Networks (EDGMAT) for network intrusion detection. The proposed EDGMAT model introduces a multi-head attention mechanism into the intrusion detection model. Additional weight learning is realized through the combination of a multi-head attention mechanism and edge features. Weighted aggregation makes better use of the relationship between different network traffic data. Experimental results on four recent NIDS benchmark datasets show that the performance of EDGMAT in terms of weighted F1-Score is significantly better than that of four state-of-the-art models in multi-class detection tasks. less
By: Lynda Boukela, Gongxuan Zhang, Meziane Yacoub, Samia Bouzefrane
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and th... more
Intrusion detection is a traditional practice of security experts, however, there are several issues which still need to be tackled. Therefore, in this paper, after highlighting these issues, we present an architecture for a hybrid Intrusion Detection System (IDS) for an adaptive and incremental detection of both known and unknown attacks. The IDS is composed of supervised and unsupervised modules, namely, a Deep Neural Network (DNN) and the K-Nearest Neighbors (KNN) algorithm, respectively. The proposed system is near-autonomous since the intervention of the expert is minimized through the active learning (AL) approach. A query strategy for the labeling process is presented, it aims at teaching the supervised module to detect unknown attacks and improve the detection of the already-known attacks. This teaching is achieved through sliding windows (SW) in an incremental fashion where the DNN is retrained when the data is available over time, thus rendering the IDS adaptive to cope with the evolutionary aspect of the network traffic. A set of experiments was conducted on the CICIDS2017 dataset in order to evaluate the performance of the IDS, promising results were obtained. less
By: Yixin Wu, Ning Yu, Michael Backes, Yun Shen, Yang Zhang
Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Ye... more
Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space. less
By: Saeif Alhazbi, Ahmed Hussain, Savio Sciancalepore, Gabriele Oligeri, Panos Papadimitratos
Radio Frequency Fingerprinting (RFF) techniques promise to authenticate wireless devices at the physical layer based on inherent hardware imperfections introduced during manufacturing. Such RF transmitter imperfections are reflected into over-the-air signals, allowing receivers to accurately identify the RF transmitting source. Recent advances in Machine Learning, particularly in Deep Learning (DL), have improved the ability of RFF systems ... more
Radio Frequency Fingerprinting (RFF) techniques promise to authenticate wireless devices at the physical layer based on inherent hardware imperfections introduced during manufacturing. Such RF transmitter imperfections are reflected into over-the-air signals, allowing receivers to accurately identify the RF transmitting source. Recent advances in Machine Learning, particularly in Deep Learning (DL), have improved the ability of RFF systems to extract and learn complex features that make up the device-specific fingerprint. However, integrating DL techniques with RFF and operating the system in real-world scenarios presents numerous challenges. This article identifies and analyzes these challenges while considering the three reference phases of any DL-based RFF system: (i) data collection and preprocessing, (ii) training, and finally, (iii) deployment. Our investigation points out the current open problems that prevent real deployment of RFF while discussing promising future directions, thus paving the way for further research in the area. less
By: Prakhar Sah, Matthew Hicks
Internet of Things (IoT) devices sit at the intersection of unwieldy software complexity and unprecedented attacker access. This unique position comes with a daunting security challenge: how can I protect both proprietary code and confidential data on a device that the attacker has unfettered access to? Trusted Execution Environments (TEEs) promise to solve this challenge through hardware-based separation of trusted and untrusted computatio... more
Internet of Things (IoT) devices sit at the intersection of unwieldy software complexity and unprecedented attacker access. This unique position comes with a daunting security challenge: how can I protect both proprietary code and confidential data on a device that the attacker has unfettered access to? Trusted Execution Environments (TEEs) promise to solve this challenge through hardware-based separation of trusted and untrusted computation and data. While TEEs do an adequate job of protecting secrets on desktop-class devices, we reveal that trade-offs made in one of the most widely-used commercial IoT devices undermine their TEE's security. This paper uncovers two fundamental weaknesses in IP Encapsulation (IPE), the TEE deployed by Texas Instruments for MSP430 and MSP432 devices. We observe that lack of call site enforcement and residual state after unexpected TEE exits enable an attacker to reveal all proprietary code and secret data within the IPE. We design and implement an attack called RIPencapsulation, which systematically executes portions of code within the IPE and uses the partial state revealed through the register file to exfiltrate secret data and to identify gadget instructions. The attack then uses gadget instructions to reveal all proprietary code within the IPE. Our evaluation with commodity devices and a production compiler and settings shows that -- even after following all manufacturer-recommended secure coding practices -- RIPencapsultaion reveals, within minutes, both the code and keys from third-party cryptographic implementations protected by the IPE. less
By: Jaiyoung Park, Donghwan Kim, Jongmin Kim, Sangpyo Kim, Wonkyung Jung, Jung Hee Cheon, Jung Ho Ahn
Incorporating fully homomorphic encryption (FHE) into the inference process of a convolutional neural network (CNN) draws enormous attention as a viable approach for achieving private inference (PI). FHE allows delegating the entire computation process to the server while ensuring the confidentiality of sensitive client-side data. However, practical FHE implementation of a CNN faces significant hurdles, primarily due to FHE's substantial co... more
Incorporating fully homomorphic encryption (FHE) into the inference process of a convolutional neural network (CNN) draws enormous attention as a viable approach for achieving private inference (PI). FHE allows delegating the entire computation process to the server while ensuring the confidentiality of sensitive client-side data. However, practical FHE implementation of a CNN faces significant hurdles, primarily due to FHE's substantial computational and memory overhead. To address these challenges, we propose a set of optimizations, which includes GPU/ASIC acceleration, an efficient activation function, and an optimized packing scheme. We evaluate our method using the ResNet models on the CIFAR-10 and ImageNet datasets, achieving several orders of magnitude improvement compared to prior work and reducing the latency of the encrypted CNN inference to 1.4 seconds on an NVIDIA A100 GPU. We also show that the latency drops to a mere 0.03 seconds with a custom hardware design. less