arXiv daily

Materials Science (cond-mat.mtrl-sci)

Mon, 21 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Interplay Between Mixed and Pure Exciton States Controls Singlet Fission in Rubrene Single Crystals

Authors:Dmitry R. Maslennikov, Marios Maimaris, Haoqing Ning, Xijia Zheng, Navendu Mondal, Vladimir V. Bruevich, Saied Md Pratik, Andrew J. Musser, Vitaly Podzorov, Jean-Luc Bredas, Veaceslav Coropceanu, Artem A. Bakulin

Abstract: Singlet fission (SF) is a multielectron process in which one singlet exciton S converts into a pair of triplet excitons T+T. SF is widely studied as it may help overcome the Shockley-Queisser efficiency limit for semiconductor photovoltaic cells. To elucidate and control the SF mechanism, great attention has been given to the identification of intermediate states in SF materials, which often appear elusive due to the complexity and fast timescales of the SF process. Here, we apply 10fs-1ms transient absorption techniques to high-purity rubrene single crystals to disentangle the intrinsic fission dynamics from the effects of defects and grain boundaries and to identify reliably the fission intermediates. We show that above-gap excitation directly generates a hybrid vibronically assisted mixture of singlet state and triplet-pair multiexciton [S:TT], which rapidly (<100fs) and coherently branches into pure singlet or triplet excitations. The relaxation of [S:TT] to S is followed by a relatively slow and temperature-activated (48 meV activation energy) incoherent fission process. The SF competing pathways and intermediates revealed here unify the observations and models presented in previous studies of SF in rubrene and propose alternative strategies for the development of SF-enhanced photovoltaic materials.

2.Band gap reduction in highly-strained silicon beams predicted by first-principles theory and validated using photoluminescence spectroscopy

Authors:Nicolas Roisin, Marie-Stéphane Colla, Romain Scaffidi, Thomas Pardoen, Denis Flandre, Jean-Pierre Raskin

Abstract: A theoretical study of the band gap reduction under tensile stress is performed and validated through experimental measurements. First-principles calculations based on density functional theory (DFT) are performed for uniaxial stress applied in the [001], [110] and [111] directions. The calculated band gap reductions are equal to 126, 240 and 100 meV at 2$\%$ strain, respectively. Photoluminescence spectroscopy experiments are performed by deformation applied in the [110] direction. Microfabricated specimens have been deformed using an on-chip tensile technique up to ~1$\%$ as confirmed by back-scattering Raman spectroscopy. A fitting correction based on the band gap fluctuation model has been used to eliminate the specimen interference signal and retrieve reliable values. Very good agreement is observed between first-principles theory and experimental results with a band gap reduction of, respectively, 93 and 91 meV when the silicon beam is deformed by 0.95$\%$ along the [110] direction.

3.Thermoelectric properties and electronic structure of Cr(Mo,V)Nx thin films studied by synchrotron and lab-based X-ray spectroscopy

Authors:Susmita Chowdhury, Victor Hjort, Rui Shu, Grzegorz Greczynski, Arnaud le Febvrier, Per Eklund, Martin Magnuson

Abstract: Chromium-based nitrides are used in hard, resilient coatings, and show promise for thermoelectric applications due to their combination of structural, thermal, and electronic properties. Here, we investigated the electronic structures and chemical bonding correlated to the thermoelectric properties of epitaxially grown chromium-based multicomponent nitride Cr(Mo,V)Nx thin films. Due to minuscule N vacancies, finite population of Cr 3d and N 2p states appear at the Fermi level and diminishes the band opening for Cr0.51N0.49. Incorporating holes by alloying V in N deficient CrN matrix results in enhanced thermoelectric power factor with marginal change in the charge transfer of Cr to N compared to Cr0.51N0.49. Further alloying Mo isoelectronic to Cr increases the density of states across the Fermi level due to hybridization of the (Cr, V) 3d and Mo 4d-N 2p states in Cr(Mo,V)Nx. The hybridization effect with reduced N 2p states off from stoichiometry drives the system towards metal like electrical resistivity and reduction in Seebeck coefficient compensating the overall power factor still comparable to Cr0.51N0.49. The N deficiency also depicts a critical role in reduction of the charge transfer from metal to N site. The present work envisages ways for enhancing thermoelectric properties through electronic band engineering by alloying and competing effects of N vacancies.

4.Coupling Between Magnetic and Transport Properties in Magnetic Layered Material Mn2-xZnxSb

Authors:Md Rafique Un Nabi, Rabindra Basnet, Krishna Pandey, Santosh Karki Chhetri, Dinesh Upreti, Gokul Acharya, Fei Wang, Arash Fereidouni, Hugh O. H. Churchill, Yingdong Guan, Zhiqiang Mao, Jin Hu

Abstract: We synthesized single crystals for Mn2-xZnxSb and studied their magnetic and electronic transport properties. This material system displays rich magnetic phase tunable with temperature and Zn composition. In addition, two groups of distinct magnetic and electronic properties, separated by a critical Zn composition of x = 0.6, are discovered. The Zn-less samples are metallic and characterized by a resistivity jump at the magnetic ordering temperature, while the Zn-rich samples lose metallicity and show a metal-to-insulator transition-like feature tunable by magnetic field. Our findings establish Mn2-xZnxSb as a promising material platform that offers opportunities to study how the coupling of spin, charge, and lattice degrees of freedom governs interesting transport properties in 2D magnets, which is currently a topic of broad interest.

5.Magnon-Phonon coupling in Fe$_3$GeTe$_2$

Authors:Namrata Bansal, Qili Li, Paul Nufer, Lichuan Zhang, Amir-Abbas Haghighirad, Yuriy Mokrousov, Wulf Wulfhekel

Abstract: We study the dynamic coupling of magnons and phonons in single crystals of Fe3GeTe2 (FGT) using inelastic scanning tunneling spectroscopy (ISTS) with an ultra-low temperature scanning tunneling microscope. Inelastic scattering of hot carriers off phonons or magnons has been widely studied using ISTS, and we use it to demonstrate strong magnon-phonon coupling in FGT. We show a strong interaction between magnons and acoustic phonons which leads to formation of van Hove singularities originating in avoided level crossings and hybridization between the magnonic and phononic bands in this material. We identify these additional hybridization points in experiments and compare their energy with density functional theory calculations. Our findings provide a platform for designing the properties of dynamic magnon-phonon coupling in two-dimensional materials.

6.Breaking Rayleigh's law with spatially correlated disorder to control phonon transport

Authors:Simon Thébaud, Lucas Lindsay, Tom Berlijn

Abstract: Controlling thermal transport in insulators and semiconductors is crucial for many technological fields such as thermoelectrics and thermal insulation, for which a low thermal conductivity ($\kappa$) is desirable. A major obstacle for realizing low $\kappa$ materials is Rayleigh's law, which implies that acoustic phonons, which carry most of the heat, are insensitive to scattering by point defects at low energy. We demonstrate, with large scale simulations on tens of millions of atoms, that isotropic long-range spatial correlations in the defect distribution can dramatically reduce phonon lifetimes of important low-frequency heat-carrying modes, leading to a large reduction of $\kappa$ -- potentially an order of magnitude at room temperature. We propose a general and quantitative framework for controlling thermal transport in complex functional materials through structural spatial correlations, and we establish the optimal functional form of spatial correlations that minimize $\kappa$. We end by briefly discussing experimental realizations of various correlated structures.