Concepts and Paradigms for Neuromorphic Programming

By: Steven Abreu

The value of neuromorphic computers depends crucially on our ability to program them for relevant tasks. Currently, neuromorphic computers are mostly limited to machine learning methods adapted from deep learning. However, neuromorphic computers have potential far beyond deep learning if we can only make use of their computational properties to harness their full power. Neuromorphic programming will necessarily be different from conventiona... more
The value of neuromorphic computers depends crucially on our ability to program them for relevant tasks. Currently, neuromorphic computers are mostly limited to machine learning methods adapted from deep learning. However, neuromorphic computers have potential far beyond deep learning if we can only make use of their computational properties to harness their full power. Neuromorphic programming will necessarily be different from conventional programming, requiring a paradigm shift in how we think about programming in general. The contributions of this paper are 1) a conceptual analysis of what "programming" means in the context of neuromorphic computers and 2) an exploration of existing programming paradigms that are promising yet overlooked in neuromorphic computing. The goal is to expand the horizon of neuromorphic programming methods, thereby allowing researchers to move beyond the shackles of current methods and explore novel directions. less
How can neuromorphic hardware attain brain-like functional capabilities?

By: Wolfgang Maass

Research on neuromorphic computing is driven by the vision that we can emulate brain-like computing capability, learning capability, and energy-efficiency in novel hardware. Unfortunately, this vision has so far been pursued in a half-hearted manner. Most current neuromorphic hardware (NMHW) employs brain-like spiking neurons instead of standard artificial neurons. This is a good first step, which does improve the energy-efficiency of some ... more
Research on neuromorphic computing is driven by the vision that we can emulate brain-like computing capability, learning capability, and energy-efficiency in novel hardware. Unfortunately, this vision has so far been pursued in a half-hearted manner. Most current neuromorphic hardware (NMHW) employs brain-like spiking neurons instead of standard artificial neurons. This is a good first step, which does improve the energy-efficiency of some computations, see \citep{rao2022long} for one of many examples. But current architectures and training methods for networks of spiking neurons in NMHW are largely copied from artificial neural networks. Hence it is not surprising that they inherit many deficiencies of artificial neural networks, rather than attaining brain-like functional capabilities. Of course, the brain is very complex, and we cannot implement all its details in NMHW. Instead, we need to focus on principles that are both easy to implement in NMHW and are likely to support brain-like functionality. The goal of this article is to highlight some of them. less
Multi-parallel-task Time-delay Reservoir Computing combining a Silicon
  Microring with WDM

By: Bernard J. Giron Castro, Christophe Peucheret, Darko Zibar, Francesco Da Ros

We numerically demonstrate a microring-based time-delay reservoir computing scheme that simultaneously solves three tasks involving time-series prediction, classification, and wireless channel equalization. Each task performed on a wavelength-multiplexed channel achieves state-of-the-art performance with optimized power and frequency detuning.
We numerically demonstrate a microring-based time-delay reservoir computing scheme that simultaneously solves three tasks involving time-series prediction, classification, and wireless channel equalization. Each task performed on a wavelength-multiplexed channel achieves state-of-the-art performance with optimized power and frequency detuning. less
SpikingJelly: An open-source machine learning infrastructure platform
  for spike-based intelligence

By: Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang, Huihui Zhou, Guoqi Li, Yonghong Tian

Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet the demands of the automatic differentiation, parallel computation acceleration, and high integration of processing neuromorphic datasets and d... more
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency by introducing neural dynamics and spike properties. As the emerging spiking deep learning paradigm attracts increasing interest, traditional programming frameworks cannot meet the demands of the automatic differentiation, parallel computation acceleration, and high integration of processing neuromorphic datasets and deployment. In this work, we present the SpikingJelly framework to address the aforementioned dilemma. We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips. Compared to existing methods, the training of deep SNNs can be accelerated $11\times$, and the superior extensibility and flexibility of SpikingJelly enable users to accelerate custom models at low costs through multilevel inheritance and semiautomatic code generation. SpikingJelly paves the way for synthesizing truly energy-efficient SNN-based machine intelligence systems, which will enrich the ecology of neuromorphic computing. less
Agreeing to Stop: Reliable Latency-Adaptive Decision Making via
  Ensembles of Spiking Neural Networks

By: Jiechen Chen, Sangwoo Park, Osvaldo Simeone

Spiking neural networks (SNNs) are recurrent models that can leverage sparsity in input time series to efficiently carry out tasks such as classification. Additional efficiency gains can be obtained if decisions are taken as early as possible as a function of the complexity of the input time series. The decision on when to stop inference and produce a decision must rely on an estimate of the current accuracy of the decision. Prior work demo... more
Spiking neural networks (SNNs) are recurrent models that can leverage sparsity in input time series to efficiently carry out tasks such as classification. Additional efficiency gains can be obtained if decisions are taken as early as possible as a function of the complexity of the input time series. The decision on when to stop inference and produce a decision must rely on an estimate of the current accuracy of the decision. Prior work demonstrated the use of conformal prediction (CP) as a principled way to quantify uncertainty and support adaptive-latency decisions in SNNs. In this paper, we propose to enhance the uncertainty quantification capabilities of SNNs by implementing ensemble models for the purpose of improving the reliability of stopping decisions. Intuitively, an ensemble of multiple models can decide when to stop more reliably by selecting times at which most models agree that the current accuracy level is sufficient. The proposed method relies on different forms of information pooling from ensemble models, and offers theoretical reliability guarantees. We specifically show that variational inference-based ensembles with p-variable pooling significantly reduce the average latency of state-of-the-art methods, while maintaining reliability guarantees. less
A self-adaptive genetic algorithm for the flying sidekick travelling
  salesman problem

By: Ted Pilcher

This paper presents a novel approach to solving the Flying Sidekick Travelling Salesman Problem (FSTSP) using a state-of-the-art self-adaptive genetic algorithm. The Flying Sidekick Travelling Salesman Problem is a combinatorial optimisation problem that extends the Travelling Salesman Problem (TSP) by introducing the use of drones. In FSTSP, the objective is to minimise the total time to visit all locations while strategically deploying a ... more
This paper presents a novel approach to solving the Flying Sidekick Travelling Salesman Problem (FSTSP) using a state-of-the-art self-adaptive genetic algorithm. The Flying Sidekick Travelling Salesman Problem is a combinatorial optimisation problem that extends the Travelling Salesman Problem (TSP) by introducing the use of drones. In FSTSP, the objective is to minimise the total time to visit all locations while strategically deploying a drone to serve hard-to-reach customer locations. Also, to the best of my knowledge, this is the first time a self-adaptive genetic algorithm (GA) has been used to solve the FSTSP problem. Experimental results on smaller-sized problem instances demonstrate that this algorithm can find a higher quantity of optimal solutions and a lower percentage gap to the optimal solution compared to rival algorithms. Moreover, on larger-sized problem instances, this algorithm outperforms all rival algorithms on each problem size while maintaining a reasonably low computation time. less
LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
  with TTFS Coding

By: Qu Yang, Malu Zhang, Jibin Wu, Kay Chen Tan, Haizhou Li

The biological neurons use precise spike times, in addition to the spike firing rate, to communicate with each other. The time-to-first-spike (TTFS) coding is inspired by such biological observation. However, there is a lack of effective solutions for training TTFS-based spiking neural network (SNN). In this paper, we put forward a simple yet effective network conversion algorithm, which is referred to as LC-TTFS, by addressing two main pro... more
The biological neurons use precise spike times, in addition to the spike firing rate, to communicate with each other. The time-to-first-spike (TTFS) coding is inspired by such biological observation. However, there is a lack of effective solutions for training TTFS-based spiking neural network (SNN). In this paper, we put forward a simple yet effective network conversion algorithm, which is referred to as LC-TTFS, by addressing two main problems that hinder an effective conversion from a high-performance artificial neural network (ANN) to a TTFS-based SNN. We show that our algorithm can achieve a near-perfect mapping between the activation values of an ANN and the spike times of an SNN on a number of challenging AI tasks, including image classification, image reconstruction, and speech enhancement. With TTFS coding, we can achieve up to orders of magnitude saving in computation over ANN and other rate-based SNNs. The study, therefore, paves the way for deploying ultra-low-power TTFS-based SNNs on power-constrained edge computing platforms. less
An Improved Artificial Fish Swarm Algorithm for Solving the Problem of
  Investigation Path Planning

By: Qian Huang, Weiwen Qian, Chang Li, Xuan Ding

Informationization is a prevailing trend in today's world. The increasing demand for information in decision-making processes poses significant challenges for investigation activities, particularly in terms of effectively allocating limited resources to plan investigation programs. This paper addresses the investigation path planning problem by formulating it as a multi-traveling salesman problem (MTSP). Our objective is to minimize costs, ... more
Informationization is a prevailing trend in today's world. The increasing demand for information in decision-making processes poses significant challenges for investigation activities, particularly in terms of effectively allocating limited resources to plan investigation programs. This paper addresses the investigation path planning problem by formulating it as a multi-traveling salesman problem (MTSP). Our objective is to minimize costs, and to achieve this, we propose a chaotic artificial fish swarm algorithm based on multiple population differential evolution (DE-CAFSA). To overcome the limitations of the artificial fish swarm algorithm, such as low optimization accuracy and the inability to consider global and local information, we incorporate adaptive field of view and step size adjustments, replace random behavior with the 2-opt operation, and introduce chaos theory and sub-optimal solutions to enhance optimization accuracy and search performance. Additionally, we integrate the differential evolution algorithm to create a hybrid algorithm that leverages the complementary advantages of both approaches. Experimental results demonstrate that DE-CAFSA outperforms other algorithms on various public datasets of different sizes, as well as showcasing excellent performance on the examples proposed in this study. less
Solving Expensive Optimization Problems in Dynamic Environments with
  Meta-learning

By: Huan Zhang, Jinliang Ding, Liang Feng, Kay Chen Tan, Ke Li

Dynamic environments pose great challenges for expensive optimization problems, as the objective functions of these problems change over time and thus require remarkable computational resources to track the optimal solutions. Although data-driven evolutionary optimization and Bayesian optimization (BO) approaches have shown promise in solving expensive optimization problems in static environments, the attempts to develop such approaches in ... more
Dynamic environments pose great challenges for expensive optimization problems, as the objective functions of these problems change over time and thus require remarkable computational resources to track the optimal solutions. Although data-driven evolutionary optimization and Bayesian optimization (BO) approaches have shown promise in solving expensive optimization problems in static environments, the attempts to develop such approaches in dynamic environments remain rarely unexplored. In this paper, we propose a simple yet effective meta-learning-based optimization framework for solving expensive dynamic optimization problems. This framework is flexible, allowing any off-the-shelf continuously differentiable surrogate model to be used in a plug-in manner, either in data-driven evolutionary optimization or BO approaches. In particular, the framework consists of two unique components: 1) the meta-learning component, in which a gradient-based meta-learning approach is adopted to learn experience (effective model parameters) across different dynamics along the optimization process. 2) the adaptation component, where the learned experience (model parameters) is used as the initial parameters for fast adaptation in the dynamic environment based on few shot samples. By doing so, the optimization process is able to quickly initiate the search in a new environment within a strictly restricted computational budget. Experiments demonstrate the effectiveness of the proposed algorithm framework compared to several state-of-the-art algorithms on common benchmark test problems under different dynamic characteristics. less
Large Language Model for Multi-objective Evolutionary Optimization

By: Fei Liu, Xi Lin, Zhenkun Wang, Shunyu Yao, Xialiang Tong, Mingxuan Yuan, Qingfu Zhang

Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs). Many MOEAs have been proposed in the past decades, of which the operators need carefully handcrafted design with domain knowledge. Recently, some attempts have been made to replace the manually designed operators in MOEAs with learning-based operators (e.g., neural network models). However, much effort is still required ... more
Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs). Many MOEAs have been proposed in the past decades, of which the operators need carefully handcrafted design with domain knowledge. Recently, some attempts have been made to replace the manually designed operators in MOEAs with learning-based operators (e.g., neural network models). However, much effort is still required for designing and training such models, and the learned operators might not generalize well to solve new problems. To tackle the above challenges, this work investigates a novel approach that leverages the powerful large language model (LLM) to design MOEA operators. With proper prompt engineering, we successfully let a general LLM serve as a black-box search operator for decomposition-based MOEA (MOEA/D) in a zero-shot manner. In addition, by learning from the LLM behavior, we further design an explicit white-box operator with randomness and propose a new version of decomposition-based MOEA, termed MOEA/D-LO. Experimental studies on different test benchmarks show that our proposed method can achieve competitive performance with widely used MOEAs. It is also promising to see the operator only learned from a few instances can have robust generalization performance on unseen problems with quite different patterns and settings. The results reveal the potential benefits of using pre-trained LLMs in the design of MOEAs. less