NephroNet: A Novel Program for Identifying Renal Cell Carcinoma and Generating Synthetic Training Images with Convolutional Neural Networks and Diffusion Models

By: Yashvir Sabharwal

Renal cell carcinoma (RCC) is a type of cancer that originates in the kidneys and is the most common type of kidney cancer in adults. It can be classified into several subtypes, including clear cell RCC, papillary RCC, and chromophobe RCC. In this study, an artificial intelligence model was developed and trained for classifying different subtypes of RCC using ResNet-18, a convolutional neural network that has been widely used for image classi... more
Renal cell carcinoma (RCC) is a type of cancer that originates in the kidneys and is the most common type of kidney cancer in adults. It can be classified into several subtypes, including clear cell RCC, papillary RCC, and chromophobe RCC. In this study, an artificial intelligence model was developed and trained for classifying different subtypes of RCC using ResNet-18, a convolutional neural network that has been widely used for image classification tasks. The model was trained on a dataset of RCC histopathology images, which consisted of digital images of RCC surgical resection slides that were annotated with the corresponding subtype labels. The performance of the trained model was evaluated using several metrics, including accuracy, precision, and recall. Additionally, in this research, a novel synthetic image generation tool, NephroNet, is developed on diffusion models that are used to generate original images of RCC surgical resection slides. Diffusion models are a class of generative models capable of synthesizing high-quality images from noise. Several diffusers such as Stable Diffusion, Dreambooth Text-to-Image, and Textual Inversion were trained on a dataset of RCC images and were used to generate a series of original images that resembled RCC surgical resection slides, all within the span of fewer than four seconds. The generated images were visually realistic and could be used for creating new training datasets, testing the performance of image analysis algorithms, and training medical professionals. NephroNet is provided as an open-source software package and contains files for data preprocessing, training, and visualization. Overall, this study demonstrates the potential of artificial intelligence and diffusion models for classifying and generating RCC images, respectively. These methods could be useful for improving the diagnosis and treatment of RCC and more. less

EGRU: Event-based GRU for activity-sparse inference and learning

By: Anand Subramoney, Khaleelulla Khan Nazeer, Mark Schöne, Christian Mayr, David Kappel

The scalability of recurrent neural networks (RNNs) is hindered by the sequential dependence of each time step's computation on the previous time step's output. Therefore, one way to speed up and scale RNNs is to reduce the computation required at each time step independent of model size and task. In this paper, we propose a model that reformulates Gated Recurrent Units (GRU) as an event-based activity-sparse model that we call the Event-base... more
The scalability of recurrent neural networks (RNNs) is hindered by the sequential dependence of each time step's computation on the previous time step's output. Therefore, one way to speed up and scale RNNs is to reduce the computation required at each time step independent of model size and task. In this paper, we propose a model that reformulates Gated Recurrent Units (GRU) as an event-based activity-sparse model that we call the Event-based GRU (EGRU), where units compute updates only on receipt of input events (event-based) from other units. When combined with having only a small fraction of the units active at a time (activity-sparse), this model has the potential to be vastly more compute efficient than current RNNs. Notably, activity-sparsity in our model also translates into sparse parameter updates during gradient descent, extending this compute efficiency to the training phase. We show that the EGRU demonstrates competitive performance compared to state-of-the-art recurrent network models in real-world tasks, including language modeling while maintaining high activity sparsity naturally during inference and training. This sets the stage for the next generation of recurrent networks that are scalable and more suitable for novel neuromorphic hardware. less

Deep Reinforcement Learning at the Edge of the Statistical Precipice

By: Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare

Deep Reinforcement Learning at the Edge of the Statistical Precipice

By: Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare

DeepCPG Policies for Robot Locomotion

By: Aditya M Deshpande, Eric Hurd, Ali A. Minai, Manish Kumar

Central Pattern Generators (CPGs) form the neural basis of the observed rhythmic behaviors for locomotion in legged animals. The CPG dynamics organized into networks allow the emergence of complex locomotor behaviors. In this work, we take this inspiration for developing walking behaviors in multi-legged robots. We present novel DeepCPG policies that embed CPGs as a layer in a larger neural network and facilitate end-to-end learning of locomo... more
Central Pattern Generators (CPGs) form the neural basis of the observed rhythmic behaviors for locomotion in legged animals. The CPG dynamics organized into networks allow the emergence of complex locomotor behaviors. In this work, we take this inspiration for developing walking behaviors in multi-legged robots. We present novel DeepCPG policies that embed CPGs as a layer in a larger neural network and facilitate end-to-end learning of locomotion behaviors in deep reinforcement learning (DRL) setup. We demonstrate the effectiveness of this approach on physics engine-based insectoid robots. We show that, compared to traditional approaches, DeepCPG policies allow sample-efficient end-to-end learning of effective locomotion strategies even in the case of high-dimensional sensor spaces (vision). We scale the DeepCPG policies using a modular robot configuration and multi-agent DRL. Our results suggest that gradual complexification with embedded priors of these policies in a modular fashion could achieve non-trivial sensor and motor integration on a robot platform. These results also indicate the efficacy of bootstrapping more complex intelligent systems from simpler ones based on biological principles. Finally, we present the experimental results for a proof-of-concept insectoid robot system for which DeepCPG learned policies initially using the simulation engine and these were afterwards transferred to real-world robots without any additional fine-tuning. less