Does GPT-4 Pass the Turing Test?

By: Cameron Jones, Benjamin Bergen

We evaluated GPT-4 in a public online Turing Test. The best-performing GPT-4 prompt passed in 41% of games, outperforming baselines set by ELIZA (27%) and GPT-3.5 (14%), but falling short of chance and the baseline set by human participants (63%). Participants' decisions were based mainly on linguistic style (35%) and socio-emotional traits (27%), supporting the idea that intelligence is not sufficient to pass the Turing Test. Participants'... more
We evaluated GPT-4 in a public online Turing Test. The best-performing GPT-4 prompt passed in 41% of games, outperforming baselines set by ELIZA (27%) and GPT-3.5 (14%), but falling short of chance and the baseline set by human participants (63%). Participants' decisions were based mainly on linguistic style (35%) and socio-emotional traits (27%), supporting the idea that intelligence is not sufficient to pass the Turing Test. Participants' demographics, including education and familiarity with LLMs, did not predict detection rate, suggesting that even those who understand systems deeply and interact with them frequently may be susceptible to deception. Despite known limitations as a test of intelligence, we argue that the Turing Test continues to be relevant as an assessment of naturalistic communication and deception. AI models with the ability to masquerade as humans could have widespread societal consequences, and we analyse the effectiveness of different strategies and criteria for judging humanlikeness. less
The Innovation-to-Occupations Ontology: Linking Business Transformation
  Initiatives to Occupations and Skills

By: Daniela Elia, Fang Chen, Didar Zowghi, Marian-Andrei Rizoiu

The fast adoption of new technologies forces companies to continuously adapt their operations making it harder to predict workforce requirements. Several recent studies have attempted to predict the emergence of new roles and skills in the labour market from online job ads. This paper aims to present a novel ontology linking business transformation initiatives to occupations and an approach to automatically populating it by leveraging embed... more
The fast adoption of new technologies forces companies to continuously adapt their operations making it harder to predict workforce requirements. Several recent studies have attempted to predict the emergence of new roles and skills in the labour market from online job ads. This paper aims to present a novel ontology linking business transformation initiatives to occupations and an approach to automatically populating it by leveraging embeddings extracted from job ads and Wikipedia pages on business transformation and emerging technologies topics. To our knowledge, no previous research explicitly links business transformation initiatives, like the adoption of new technologies or the entry into new markets, to the roles needed. Our approach successfully matches occupations to transformation initiatives under ten different scenarios, five linked to technology adoption and five related to business. This framework presents an innovative approach to guide enterprises and educational institutions on the workforce requirements for specific business transformation initiatives. less
FormalGeo: The First Step Toward Human-like IMO-level Geometric
  Automated Reasoning

By: Xiaokai Zhang, Na Zhu, Yiming He, Jia Zou, Qike Huang, Xiaoxiao Jin, Yanjun Guo, Chenyang Mao, Zhe Zhu, Dengfeng Yue, Fangzhen Zhu, Yang Li, Yifan Wang, Yiwen Huang, Runan Wang, Cheng Qin, Zhenbing Zeng, Shaorong Xie, Xiangfeng Luo, Tuo Leng

This is the first article of our work over the past decade. In this series of papers, we have constructed a complete and compatible formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. With this formal system in place, we have been able to seamlessly integrate modern AI models with our formal system. Within this formal framework, AI is now capable ... more
This is the first article of our work over the past decade. In this series of papers, we have constructed a complete and compatible formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. With this formal system in place, we have been able to seamlessly integrate modern AI models with our formal system. Within this formal framework, AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver, utilizing various methods such as forward search, backward search and AI-assisted search. We've annotated the FormalGeo7k dataset, containing 6,981 (expand to 186,832 through data augmentation) geometry problems with complete formal language annotations. Implementation of the formal system and experiments on the FormalGeo7k validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and FormalGeo7k dataset are available at https://github.com/BitSecret/FormalGeo. less
Moral Responsibility for AI Systems

By: Sander Beckers

As more and more decisions that have a significant ethical dimension are being outsourced to AI systems, it is important to have a definition of moral responsibility that can be applied to AI systems. Moral responsibility for an outcome of an agent who performs some action is commonly taken to involve both a causal condition and an epistemic condition: the action should cause the outcome, and the agent should have been aware -- in some form... more
As more and more decisions that have a significant ethical dimension are being outsourced to AI systems, it is important to have a definition of moral responsibility that can be applied to AI systems. Moral responsibility for an outcome of an agent who performs some action is commonly taken to involve both a causal condition and an epistemic condition: the action should cause the outcome, and the agent should have been aware -- in some form or other -- of the possible moral consequences of their action. This paper presents a formal definition of both conditions within the framework of causal models. I compare my approach to the existing approaches of Braham and van Hees (BvH) and of Halpern and Kleiman-Weiner (HK). I then generalize my definition into a degree of responsibility. less
Fine-Tuning Language Models Using Formal Methods Feedback

By: Yunhao Yang, Neel P. Bhatt, Tyler Ingebrand, William Ward, Steven Carr, Zhangyang Wang, Ufuk Topcu

Although pre-trained language models encode generic knowledge beneficial for planning and control, they may fail to generate appropriate control policies for domain-specific tasks. Existing fine-tuning methods use human feedback to address this limitation, however, sourcing human feedback is labor intensive and costly. We present a fully automated approach to fine-tune pre-trained language models for applications in autonomous systems, brid... more
Although pre-trained language models encode generic knowledge beneficial for planning and control, they may fail to generate appropriate control policies for domain-specific tasks. Existing fine-tuning methods use human feedback to address this limitation, however, sourcing human feedback is labor intensive and costly. We present a fully automated approach to fine-tune pre-trained language models for applications in autonomous systems, bridging the gap between generic knowledge and domain-specific requirements while reducing cost. The method synthesizes automaton-based controllers from pre-trained models guided by natural language task descriptions. These controllers are verifiable against independently provided specifications within a world model, which can be abstract or obtained from a high-fidelity simulator. Controllers with high compliance with the desired specifications receive higher ranks, guiding the iterative fine-tuning process. We provide quantitative evidences, primarily in autonomous driving, to demonstrate the method's effectiveness across multiple tasks. The results indicate an improvement in percentage of specifications satisfied by the controller from 60% to 90%. less
Moments for Perceptive Narration Analysis Through the Emotional
  Attachment of Audience to Discourse and Story

By: Gary Bruins, Ergun Akleman

In this work, our goal is to develop a theoretical framework that can eventually be used for analyzing the effectiveness of visual stories such as feature films to comic books. To develop this theoretical framework, we introduce a new story element called moments. Our conjecture is that any linear story such as the story of a feature film can be decomposed into a set of moments that follow each other. Moments are defined as the perception o... more
In this work, our goal is to develop a theoretical framework that can eventually be used for analyzing the effectiveness of visual stories such as feature films to comic books. To develop this theoretical framework, we introduce a new story element called moments. Our conjecture is that any linear story such as the story of a feature film can be decomposed into a set of moments that follow each other. Moments are defined as the perception of the actions, interactions, and expressions of all characters or a single character during a given time period. We categorize the moments into two major types: story moments and discourse moments. Each type of moment can further be classified into three types, which we call universal storytelling moments. We believe these universal moments foster or deteriorate the emotional attachment of the audience to a particular character or the story. We present a methodology to catalog the occurrences of these universal moments as they are found in the story. The cataloged moments can be represented using curves or color strips. Therefore, we can visualize a character's journey through the story as either a 3D curve or a color strip. We also demonstrated that both story and discourse moments can be transformed into one lump-sum attraction parameter. The attraction parameter in time provides a function that can be plotted graphically onto a timeline illustrating changes in the emotional attachment of audience to a character or the story. By inspecting these functions the story analyst can analytically decipher the moments in the story where the attachment is being established, maintained, strengthened, or conversely where it is languishing. less
Content-based Controls For Music Large Language Modeling

By: Liwei Lin, Gus Xia, Junyan Jiang, Yixiao Zhang

Recent years have witnessed a rapid growth of large-scale language models in the domain of music audio. Such models enable end-to-end generation of higher-quality music, and some allow conditioned generation using text descriptions. However, the control power of text controls on music is intrinsically limited, as they can only describe music indirectly through meta-data (such as singers and instruments) or high-level representations (such a... more
Recent years have witnessed a rapid growth of large-scale language models in the domain of music audio. Such models enable end-to-end generation of higher-quality music, and some allow conditioned generation using text descriptions. However, the control power of text controls on music is intrinsically limited, as they can only describe music indirectly through meta-data (such as singers and instruments) or high-level representations (such as genre and emotion). We aim to further equip the models with direct and content-based controls on innate music languages such as pitch, chords and drum track. To this end, we contribute Coco-Mulla, a content-based control method for music large language modeling. It uses a parameter-efficient fine-tuning (PEFT) method tailored for Transformer-based audio models. Experiments show that our approach achieved high-quality music generation with low-resource semi-supervised learning, tuning with less than 4% parameters compared to the original model and training on a small dataset with fewer than 300 songs. Moreover, our approach enables effective content-based controls, and we illustrate the control power via chords and rhythms, two of the most salient features of music audio. Furthermore, we show that by combining content-based controls and text descriptions, our system achieves flexible music variation generation and style transfer. Our source codes and demos are available online. less
Graphical Object-Centric Actor-Critic

By: Leonid Ugadiarov, Aleksandr I. Panov

There have recently been significant advances in the problem of unsupervised object-centric representation learning and its application to downstream tasks. The latest works support the argument that employing disentangled object representations in image-based object-centric reinforcement learning tasks facilitates policy learning. We propose a novel object-centric reinforcement learning algorithm combining actor-critic and model-based appr... more
There have recently been significant advances in the problem of unsupervised object-centric representation learning and its application to downstream tasks. The latest works support the argument that employing disentangled object representations in image-based object-centric reinforcement learning tasks facilitates policy learning. We propose a novel object-centric reinforcement learning algorithm combining actor-critic and model-based approaches to utilize these representations effectively. In our approach, we use a transformer encoder to extract object representations and graph neural networks to approximate the dynamics of an environment. The proposed method fills a research gap in developing efficient object-centric world models for reinforcement learning settings that can be used for environments with discrete or continuous action spaces. Our algorithm performs better in a visually complex 3D robotic environment and a 2D environment with compositional structure than the state-of-the-art model-free actor-critic algorithm built upon transformer architecture and the state-of-the-art monolithic model-based algorithm. less
Efficient Data Fusion using the Tsetlin Machine

By: Rupsa Saha, Vladimir I. Zadorozhny, Ole-Christoffer Granmo

We propose a novel way of assessing and fusing noisy dynamic data using a Tsetlin Machine. Our approach consists in monitoring how explanations in form of logical clauses that a TM learns changes with possible noise in dynamic data. This way TM can recognize the noise by lowering weights of previously learned clauses, or reflect it in the form of new clauses. We also perform a comprehensive experimental study using notably different dataset... more
We propose a novel way of assessing and fusing noisy dynamic data using a Tsetlin Machine. Our approach consists in monitoring how explanations in form of logical clauses that a TM learns changes with possible noise in dynamic data. This way TM can recognize the noise by lowering weights of previously learned clauses, or reflect it in the form of new clauses. We also perform a comprehensive experimental study using notably different datasets that demonstrated high performance of the proposed approach. less
TST$^\mathrm{R}$: Target Similarity Tuning Meets the Real World

By: Anirudh Khatry, Sumit Gulwani, Priyanshu Gupta, Vu Le, Ananya Singha, Mukul Singh, Gust Verbruggen

Target similarity tuning (TST) is a method of selecting relevant examples in natural language (NL) to code generation through large language models (LLMs) to improve performance. Its goal is to adapt a sentence embedding model to have the similarity between two NL inputs match the similarity between their associated code outputs. In this paper, we propose different methods to apply and improve TST in the real world. First, we replace the se... more
Target similarity tuning (TST) is a method of selecting relevant examples in natural language (NL) to code generation through large language models (LLMs) to improve performance. Its goal is to adapt a sentence embedding model to have the similarity between two NL inputs match the similarity between their associated code outputs. In this paper, we propose different methods to apply and improve TST in the real world. First, we replace the sentence transformer with embeddings from a larger model, which reduces sensitivity to the language distribution and thus provides more flexibility in synthetic generation of examples, and we train a tiny model that transforms these embeddings to a space where embedding similarity matches code similarity, which allows the model to remain a black box and only requires a few matrix multiplications at inference time. Second, we how to efficiently select a smaller number of training examples to train the TST model. Third, we introduce a ranking-based evaluation for TST that does not require end-to-end code generation experiments, which can be expensive to perform. less