Almost Optimal Locality Sensitive Orderings in Euclidean Space

By: Zhimeng Gao, Sariel Har-Peled

$ \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\Eps}{\Mh{\mathcal{E}}} \newcommand{\p}{\Mh{p}} \newcommand{\q}{\Mh{q}} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{... more
$ \newcommand{\Re}{\mathbb{R}} \newcommand{\reals}{\mathbb{R}} \newcommand{\SetX}{\mathsf{X}} \newcommand{\rad}{r} \newcommand{\Eps}{\Mh{\mathcal{E}}} \newcommand{\p}{\Mh{p}} \newcommand{\q}{\Mh{q}} \newcommand{\Mh}[1]{#1} \newcommand{\query}{q} \newcommand{\eps}{\varepsilon} \newcommand{\VorX}[1]{\mathcal{V} \pth{#1}} \newcommand{\Polygon}{\mathsf{P}} \newcommand{\IntRange}[1]{[ #1 ]} \newcommand{\Space}{\overline{\mathsf{m}}} \newcommand{\pth}[2][\!]{#1\left({#2}\right)} \newcommand{\polylog}{\mathrm{polylog}} \newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\pt}{p} \newcommand{\distY}[2]{\left\| {#1} - {#2} \right\|} \newcommand{\ptq}{q} \newcommand{\pts}{s}$ For a parameter $\eps \in (0,1)$, we present a new construction of $\eps$-locality-sensitive orderings (<em>LSO</em>s) in $\Re^d$ of size $M = O(\Eps^{d-1} \log \Eps)$, where $\Eps = 1/\eps$. This improves over previous work by a factor of $\Eps$, and is optimal up to a factor of $\log \Eps$. Such a set of LSOs has the property that for any two points, $\p, \q \in [0,1]^d$, there exist an order in the set such that all the points between $\p$ and $\q$ in the order are $\eps$-close to either $\p$ or $\q$. The existence of such LSOs is a fundamental property of low dimensional Euclidean space, conceptually similar to the existence of well-separated pairs decomposition, so the question of how to compute (near) optimal construction of LSOs is quite natural. As a consequence we get a flotilla of improved dynamic geometric algorithms, such as maintaining bichromatic closest pair, and spanners, among others. In particular, for geometric dynamic spanners the new result matches (up to the aforementioned $\log \Eps$ factor) the lower bound, Thus offering a near-optimal simple dynamic data-structure for maintaining spanners under insertions and deletions. less
POLYLLA: Polygonal/Polyhedral meshing algorithm based on terminal-edge
  regions and terminal-face regions

By: Sergio Salinas-Fernández, Nancy Hitschfeld-Kahler

Polylla is a polygonal mesh algorithm that generates meshes with arbitrarily shaped polygons using the concept of terminal-edge regions. Until now, Polylla has been limited to 2D meshes, but in this work, we extend Polylla to 3D volumetric meshes. We present two versions of Polylla 3D. The first version generates terminal-edge regions, converts them into polyhedra, and repairs polyhedra that are joined by only an edge. This version differs ... more
Polylla is a polygonal mesh algorithm that generates meshes with arbitrarily shaped polygons using the concept of terminal-edge regions. Until now, Polylla has been limited to 2D meshes, but in this work, we extend Polylla to 3D volumetric meshes. We present two versions of Polylla 3D. The first version generates terminal-edge regions, converts them into polyhedra, and repairs polyhedra that are joined by only an edge. This version differs from the original Polylla algorithm in that it does not have the same phases as the 2D version. In the second version, we define two new concepts: longest-face propagation path and terminal-face regions. We use these concepts to create an almost direct extension of the 2D Polylla mesh with the same three phases: label phase, traversal phase, and repair phase. less
Geometric Assignment and Geometric Bottleneck

By: Sergio Cabello, Siu-Wing Cheng, Otfried Cheong, Christian Knauer

Let $P$ be a set of at most $n$ points and let $R$ be a set of at most $n$ geometric ranges, such as for example disks or rectangles, where each $p \in P$ has an associated supply $s_{p} > 0$, and each $r \in R$ has an associated demand $d_{r} > 0$. An assignment is a set $\mathcal{A}$ of ordered triples $(p,r,a_{pr}) \in P \times R \times \mathbb{R}_{>0}$ such that $p \in r$. We show how to compute a maximum assignment that satisfies the c... more
Let $P$ be a set of at most $n$ points and let $R$ be a set of at most $n$ geometric ranges, such as for example disks or rectangles, where each $p \in P$ has an associated supply $s_{p} > 0$, and each $r \in R$ has an associated demand $d_{r} > 0$. An assignment is a set $\mathcal{A}$ of ordered triples $(p,r,a_{pr}) \in P \times R \times \mathbb{R}_{>0}$ such that $p \in r$. We show how to compute a maximum assignment that satisfies the constraints given by the supplies and demands. Using our techniques, we can also solve minimum bottleneck problems, such as computing a perfect matching between a set of $n$ red points~$P$ and $n$ blue points $Q$ that minimizes the length of the longest edge. For the $L_\infty$-metric, we can do this in time $O(n^{1+\varepsilon})$ in any fixed dimension, for the $L_2$-metric in the plane in time $O(n^{4/3 + \varepsilon})$, for any $\varepsilon > 0$. less