Evolution of antivirus defense in prokaryotes depending on the environmental virus prevalence and virome dynamics
Evolution of antivirus defense in prokaryotes depending on the environmental virus prevalence and virome dynamics
Babajanyan, S.; Garushyants, S. K.; Wolf, Y. I.; Koonin, E. V.
AbstractProkaryotes can acquire antivirus immunity via two fundamentally distinct types of processes: direct interaction with the virus as in CRISPR-Cas adaptive immunity systems and horizontal gene transfer (HGT) which is the main route of transmission of innate immunity systems. These routes of defense evolution are not mutually exclusive and can operate simultaneously, but empirical observations suggest that at least in some bacterial and archaeal species, one or the other route dominates the defense landscape. We hypothesized that the observed dichotomy stems from different life-history tradeoffs characteristic of these organisms. To test this hypothesis, we analyzed a mathematical model of a well-mixed prokaryote population under a stochastically changing viral prevalence. Optimization of the long-term population growth rate reveals two contrasting modes of defense evolution. In stable, predictable and fluctuating, unpredictable environments with a moderate viral prevalence, direct interaction with the virus and horizontal transfer of defense genes become the optimal routes of immunity acquisition, respectively. In the HGT-dominant mode, we observed a universal distribution of the fraction of microbes with different immune repertoires. Under very low virus prevalence, the cost of immunity exceeds the benefits such that the optimal state of a prokaryote is complete defense systems. By contrast, under very high virus prevalence, horizontal spread of defense systems dominates regardless of the stability of the virome. These findings might explain consistent but enigmatic patterns in the spread of antivirus defense systems among prokaryotes such as the ubiquity of adaptive immunity in hyperthermophiles contrasting their patchy distribution among mesophiles.