PFKFB3 protein in adipose tissue contributes to whole body glucose homeostasis
PFKFB3 protein in adipose tissue contributes to whole body glucose homeostasis
OLSON, A. L.; Griesel, B. A.
AbstractAge-dependent changes in adipose tissue are thought to play a role in development of insulin resistance. A major age-dependent change in adipose tissue is the downregulation of key proteins involved in carbohydrate metabolism. In the current study, we investigate the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) a key governor of the rate of glycolysis in adipocytes via the synthesis of fructose-2,6-bisphosphate that was significantly down-regulated in aged mice. We employed an adipocyte-specific PFKFB3 mouse line to investigate the role of PFKFB3 on adipocyte function. In both aged mice and PFKFB3-knockout mice, we observed an increase in O-glcNAcylated proteins consistent with a shift in glucose metabolism toward the hexosamine biosynthetic pathway. Under chow-fed conditions, PFKFB3 knockout resulted in significantly smaller adipocyte area, but no difference in total fat mass. While glucose tolerance was unchanged under chow conditions, when mice were challenged with a 4 wk high fat feeding, PFKFB3 deletion led to a greater decrease in glucose tolerance as well as a significant increase in macrophage infiltration. These results indicate that perturbation of the glycolytic pathway in adipose tissue has multiple effects of adipocyte biology and may play a significant role in metabolic changes associated with aging. Results of this student support the notion that changes in glucose metabolism in adipose tissue impact whole body metabolism.