1.Mean-field interacting multi-type birth-death processes with a view to applications in phylodynamics

Authors:William S. DeWitt, Steven N. Evans, Ella Hiesmayr, Sebastian Hummel

Abstract: Multi-type birth-death processes underlie approaches for inferring evolutionary dynamics from phylogenetic trees across biological scales, ranging from deep-time species macroevolution to rapid viral evolution and somatic cellular proliferation. A limitation of current phylogenetic birth-death models is that they require restrictive linearity assumptions that yield tractable likelihoods, but that also preclude interactions between individuals. Many fundamental evolutionary processes -- such as environmental carrying capacity or frequency-dependent selection -- entail interactions, and may strongly influence the dynamics in some systems. Here, we introduce a multi-type birth-death process in mean-field interaction with an ensemble of replicas of the focal process. We prove that, under quite general conditions, the ensemble's stochastically evolving interaction field converges to a deterministic trajectory in the limit of an infinite ensemble. In this limit, the replicas effectively decouple, and self-consistent interactions appear as nonlinearities in the infinitesimal generator of the focal process. We investigate a special case that is amenable to calculations in the context of a phylogenetic birth-death model, and is rich enough to model both carrying capacity and frequency-dependent selection.

2.Forward hysteresis and Hopf bifurcation in an NPZD model with application to harmful algal blooms

Authors:Joshua C. Macdonald, Hayriye Gulbudak

Abstract: Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD) models, describing the interactions between phytoplankton, zooplankton systems, and their ecosystem, are used to predict their ecological and evolutionary population dynamics. These organisms form the base two trophic levels of aquatic ecosystems. Hence understanding their population dynamics and how disturbances can affect these systems is crucial. Here, starting from a base NPZ modeling framework, we incorporate the harmful effects of phytoplankton overpopulation on zooplankton - representing a crucial next step in harmful algal bloom (HAB) modeling - and split the nutrient compartment to formulate an NPZD model. We then mathematically analyze the NPZ system upon which this new model is based, including local and global stability of equilibria, Hopf bifurcation condition, and forward hysteresis, where the bi-stability occurs with multiple attractors. Finally, we extend the threshold analysis to the NPZD model, which displays both forward hysteresis with bi-stability and Hopf bifurcation under different parameter regimes, and examine ecological implications after incorporating seasonality and ecological disturbances. Ultimately, we quantify ecosystem health in terms of the relative values of the robust persistence thresholds for phytoplankton and zooplankton and find (i) ecosystems sufficiently favoring phytoplankton, as quantified by the relative values of the plankton persistence numbers, are vulnerable to both HABs and (local) zooplankton extinction (ii) even healthy ecosystems are extremely sensitive to nutrient depletion over relatively short time scales.

3.Coexistence of Competing Microbial Strains under Twofold Environmental Variability and Demographic Fluctuations

Authors:Matthew Asker, Lluís Hernández-Navarro, Alastair M. Rucklidge, Mauro Mobilia

Abstract: Microbial populations generally evolve in volatile environments, under conditions fluctuating between harsh and mild, e.g. as the result of sudden changes in toxin concentration or nutrient abundance. Environmental variability thus shapes the population long-time dynamics, notably by influencing the ability of different strains of microorganisms to coexist. Inspired by the evolution of antimicrobial resistance, we study the dynamics of a community consisting of two competing strains subject to twofold environmental variability. The level of toxin varies in time, favouring the growth of one strain under low levels and the other strain when the toxin level is high. We also model time-changing resource abundance by a randomly switching carrying capacity that drives the fluctuating size of the community. While one strain dominates in a static environment, we show that species coexistence is possible in the presence of environmental variability. By computational and analytical means, we determine the environmental conditions under which long-lived coexistence is possible and when it is almost certain. We also determine how the make-up of the coexistence phase and the average abundance of each strain depend on the environmental variability.

4.Coupled environmental and demographic fluctuations shape the evolution of cooperative antimicrobial resistance

Authors:Lluís Hernández-Navarro, Matthew Asker, Alastair M. Rucklidge, Mauro Mobilia

Abstract: There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behavior leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is however greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve. Here, we study the eco-evolutionary dynamics of a population consisting of an antimicrobial resistant strain and microbes sensitive to antimicrobial drugs in a time-fluctuating environment, modeled by a carrying capacity randomly switching between states of abundance and scarcity. We assume that antimicrobial resistance is a shared public good when the number of resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is thus characterized by demographic noise (birth and death events) coupled to environmental fluctuations which can cause population bottlenecks. By combining analytical and computational means, we determine the environmental conditions for the long-lived coexistence and fixation of both strains, and characterize a fluctuation-driven antimicrobial resistance eradication mechanism, where resistant microbes experience bottlenecks leading to extinction. We also discuss the possible applications of our findings to laboratory-controlled experiments.