Chronic fluoxetine treatment desensitizes serotoninergic inhibition of GABA inputs and the intrinsic excitability of dorsal raphe serotonin neurons

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Chronic fluoxetine treatment desensitizes serotoninergic inhibition of GABA inputs and the intrinsic excitability of dorsal raphe serotonin neurons

Authors

Zhang, W.; Jin, Y.; Zhou, F.-M.

Abstract

Dorsal raphe serotonin (5-hydroxytryptamine, 5-HT) neurons are spontaneously active and release 5-HT that is critical to normal brain function such mood and emotion. Serotonin reuptake inhibitors (SSRIs) increase the synaptic and extracellular 5-HT level and are effective in treating depression. Treatment of two weeks or longer is often required for SSRIs to exert clinical benefits. The cellular mechanism underlying this delay was not fully understood. Here we show that the GABAergic inputs inhibit the spike firing of raphe 5-HT neurons; this GABAergic regulation was reduced by 5-HT, which was prevented by G-protein-activated inwardly rectifying potassium (Girk) channel inhibitor tertiapin-Q, indicating a contribution of 5-HT activation of Girk channels in GABAergic presynaptic axon terminals. Equally important, after 14 days of treatment of fluoxetine, a widely used SSRI type antidepressant, this 5-HT inhibition of GABAergic inputs was substantially downregulated. Furthermore, the chronic fluoxetine treatment substantially downregulated the 5-HT activation of the inhibitory Girk current in 5-HT neurons. Taken together, our results suggest that chronic fluoxetine administration, by blocking 5-HT reuptake and hence increasing the extracellular 5-HT level, can downregulate the function of 5-HT1B receptors on the GABAergic afferent axon terminals synapsing onto 5-HT neurons, allowing extrinsic, behaviorally important GABA neurons to more effectively influence 5-HT neurons; simultaneously, chronic fluoxetine treatment also downregulate somatic 5-HT autoreceptor-activated Girk channel-mediated hyperpolarization and decrease in input resistance and intrinsic excitability, rendering 5-HT neurons resistant to autoinhibition and leading to increased 5-HT neuron activity, potentially contributing to the antidepressant effect of SSRIs.

Follow Us on

0 comments

Add comment