Risk factors for fluoroquinolone- and macrolide-resistance among swine Campylobacter coli using multi-layered chain graphs
Risk factors for fluoroquinolone- and macrolide-resistance among swine Campylobacter coli using multi-layered chain graphs
Wang, C. A.; Love, W. J.; Jara, M.; Thakur, S.; van Vliet, A. H. M.; Lanzas, C.
AbstractCampylobacter spp. resistant to fluoroquinolones and macrolides are serious public health threats. Studies aiming to identify risk factors for drug-resistant Campylobacter have narrowly focused on antimicrobial use at the farm level. Using chain graphs, we quantified risk factors for fluoroquinolones- and macrolide-resistance in Campylobacter coli isolated from two distinctive swine production systems, conventional and antibiotic-free (ABF). The chain graphs were learned using genotypic and phenotypic resistance data from 1082 isolates and host exposures obtained through surveys for 18 cohorts of pigs. The gyrA T86I point mutation alone explained at least 58 % of the variance in ciprofloxacin minimum inhibitory concentration (MIC) for ABF and 79 % in conventional farms. For macrolides, genotype and host exposures explained similar variance in azithromycin and erythromycin MIC. Among host exposures, heavy metal exposures were identified as risk factors in both conventional and ABF. Chain graph models can generate insights into the complex epidemiology of antimicrobial resistance by characterizing context-specific risk factors and facilitating causal discovery.