A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants
A CRISPR/Cas9-induced restoration of bioluminescence reporter system for single-cell gene expression analysis in plants
Ueno, R.; Ito, S.; Oyama, T.
AbstractBioluminescence monitoring techniques have greatly contributed to revealing a variety of biological regulatory systems in living organisms, including circadian clocks. In plant science, these techniques are applied to long-term quantitative analyses of gene expression behavior. Transient transfection with a luciferase reporter using the particle bombardment method has been used for bioluminescence observations at the single- cell level. This allows for capturing heterogeneity and temporal fluctuations in cellular gene expression. We developed a novel CRISPR/Cas9-induced restoration of bioluminescence reporter system, CiRBS, to monitor cellular bioluminescence from a reporter gene in the genome of transgenic Arabidopsis. In this method, the enzymatic activity of an inactive luciferase mutant, LUC40Ins26bp, which has a 26-bp insertion at the 40th codon, was restored by introducing an indel at the insertion site using CRISPR/Cas9. We succeeded in long-term monitoring of the cellular bioluminescence of Arabidopsis plants expressing LUC40Ins26bp, which was restored by transient transfection with CRISPR/Cas9-inducible constructs using particle bombardment. Recombination events via indels were mostly complete within 24 h of CRISPR/Cas9 induction, and 7.2% of CRISPR/Cas9-transfected cells restored bioluminescence. It was estimated that 94% of the bioluminescence-restored cells carried only one chromosome having the optimal recombination construction. Thus, CiRBS allows for reliable single-cell gene expression analysis of cell-to-cell heterogeneity and temporal fluctuations from a single locus.