Poster
0

The Impact of Electrophysiological Diversity on Pattern Completion in Lithium Nonresponsive Bipolar Disorder: A Computational Modelling Approach

Avatar
Voices Powered byElevenlabs logo

Available only for arXiv papers.

Authors

Nunes, A.; Singh, S.; Khayachi, A.; Stern, S.; Trappenberg, T.; Alda, M.

Abstract

Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem-cell derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3. We simulated pattern completion tasks using a computational model of the CA3 with different degrees of pyramidal cell excitability variance. Since pyramidal cell excitability variance naturally leads to a mix of hyperexcitability and hypoexcitability, we also examined what fraction (hyper- vs. hypoexcitable) was predominantly responsible for pattern completion errors in our model. Pyramidal cell excitability variance impaired pattern completion (linear model beta =-1.94, SE=0.01, p<0.001). The effect was invariant to the number of patterns stored in the network, as well as general inhibitory tone and pyramidal cell sparsity in the network. Excitability variance, and more specifically hyperexcitability, increased the number of spuriously active neurons, increasing false alarm rates and producing pattern completion deficits. Excessive inhibition also induces pattern completion deficits by limiting the number of correctly active neurons during pattern retrieval. Excitability variance in CA3 pyramidal cell-like neurons observed in lithium nonresponders may predict pattern completion deficits in these patients. These cognitive deficits may not be fully corrected by medications that minimize excitability. Future studies should test our predictions by examining behavioural correlates of pattern completion in lithium responsive and nonresponsive BD patients.

Follow Us on

0 comments

Add comment
Recommended SciCasts