Denoising Heat-inspired Diffusion with Insulators for Collision Free Motion Planning

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Denoising Heat-inspired Diffusion with Insulators for Collision Free Motion Planning

Authors

Junwoo Chang, Hyunwoo Ryu, Jiwoo Kim, Soochul Yoo, Joohwan Seo, Nikhil Prakash, Jongeun Choi, Roberto Horowitz

Abstract

Diffusion models have risen as a powerful tool in robotics due to their flexibility and multi-modality. While some of these methods effectively address complex problems, they often depend heavily on inference-time obstacle detection and require additional equipment. Addressing these challenges, we present a method that, during inference time, simultaneously generates only reachable goals and plans motions that avoid obstacles, all from a single visual input. Central to our approach is the novel use of a collision-avoiding diffusion kernel for training. Through evaluations against behavior-cloning and classical diffusion models, our framework has proven its robustness. It is particularly effective in multi-modal environments, navigating toward goals and avoiding unreachable ones blocked by obstacles, while ensuring collision avoidance.

Follow Us on

0 comments

Add comment