Phase-Separating Peptide Coacervates with Programmable Material Properties for Universal Intracellular Delivery of Macromolecules

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Phase-Separating Peptide Coacervates with Programmable Material Properties for Universal Intracellular Delivery of Macromolecules

Authors

Sun, Y.; Wu, X.; Li, J.; Radiom, M.; Mezzenga, R.; Verma, C. S.; Yu, J.; Miserez, A.

Abstract

Phase-separating peptides (PSPs) self-assembling into coacervate microdroplets (CMs) are a promising new class of intracellular delivery vehicles that can release macromolecular modalities deployed in a wide range of therapeutic treatments. However, the molecular grammar governing intracellular uptake and release kinetics of CMs remains elusive. Here, we systematically manipulated the sequence of PSPs to unravel the relationships between their molecular structure, the physical properties of the resulting CMs, and their delivery efficacy. We show that a few amino acid alterations are sufficient to modulate the viscoelastic properties of CMs towards either a gel-like or a liquid-like state as well as their binding interaction with cellular membranes, collectively enabling to tune the kinetics of intracellular cargo release. Our findings provide molecular guidelines to precisely program the material properties of PSP CMs and achieve tunable cellular uptake and release kinetics depending on the cargo modality, with broad implications for therapeutic applications.

Follow Us on

0 comments

Add comment