A distinct isoform of Msp300/Nesprin organizes the perinuclear microtubule organizing center in adipose cells

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

A distinct isoform of Msp300/Nesprin organizes the perinuclear microtubule organizing center in adipose cells

Authors

Morton, G. M.; Toledo, M. P.; Zheng, Y.; Zheng, C.; Megraw, T. L.

Abstract

In many cell types, disparate non-centrosomal microtubule-organizing centers (ncMTOCs) replace functional centrosomes and serve the unique needs of the cell types in which they are formed. In Drosophila fat body cells (adipocytes), an ncMTOC is organized on the nuclear surface. This perinuclear ncMTOC is anchored by Msp300, encoded by one of two Nesprin-encoding genes in Drosophila. Msp300 and the spectraplakin short stop (shot) are co-dependent for localization to the nuclear envelope to generate the ncMTOC where they recruit the microtubule minus-end stabilizer Patronin (CAMSAP). The fat body perinuclear ncMTOC requires Patronin, Ninein, and Msps (ortholog of ch-TOG), but does not require {gamma}-tubulin for MT assembly. The Msp300 gene is complex, encoding at least eleven isoforms. Here we show that two Msp300 isoforms, Msp300-PE and -PG, are required and only one, Msp300-PE, appears sufficient for generation of the ncMTOC. Loss of Msp300-PE,-PG retains the presence of the other isoforms at the nuclear surface, indicating that they are not sufficient to generate the ncMTOC. Loss of Msp300-PE,-PG results in severe loss of localization of shot and Patronin, and disruption of the MT array. This results in nuclear mispositioning and loss of endosomal trafficking. Msp300-PE has an unusual domain structure including a lack of a KASH domain and very few spectrin repeats and appears therefore to have a highly derived function suited to generating an ncMTOC on the nuclear surface.

Follow Us on

0 comments

Add comment