Gamma Synchrony Mediates Figure-Ground Perception
Gamma Synchrony Mediates Figure-Ground Perception
Karimian, M.; Roberts, M. J.; De Weerd, P.; Senden, M.
AbstractGamma synchrony is ubiquitous in visual cortex, but whether it contributes to perceptual grouping remains contentious based on observations that gamma frequency is not consistent across stimulus features and that gamma synchrony depends on distances between image elements. These stimulus dependencies have been argued to render synchrony among neural assemblies encoding components of the same object difficult. Alternatively, these dependencies may shape synchrony in meaningful ways. Using the theory of weakly coupled oscillators (TWCO), we demonstrate that stimulus dependence is crucial for gamma's role in perception. Synchronization among coupled oscillators depends on frequency dissimilarity and coupling strength, which in early visual cortex relate to local feature dissimilarity and physical distance, respectively. We manipulated these factors in a texture segregation experiment wherein human observers identified the orientation of a figure defined by reduced contrast heterogeneity compared to the background. Human performance followed TWCO predictions both qualitatively and quantitatively, as formalized in a computational model. Moreover, we found that when enriched with a Hebbian learning rule, our model also predicted human learning effects. Increases in gamma synchrony due to perceptual learning predicted improvements in behavioral performance across sessions. This suggests that the stimulus-dependence of gamma synchrony is adaptable to the statistics of visual experiences, providing a viable neural grouping mechanism that can improve with visual experience. Together our results highlight the functional role of gamma synchrony in visual scene segmentation and provide a mechanistic explanation for its stimulus-dependent variability.