A comprehensive study of type I (thermonuclear) bursts in the new transient SRGA J144459.2$-$604207

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

A comprehensive study of type I (thermonuclear) bursts in the new transient SRGA J144459.2$-$604207

Authors

Tao Fu, Zhaosheng Li, Yuanyue Pan, Long Ji, Yupeng Chen, Lucien Kuiper, Duncan K. Galloway, Maurizio Falanga, Renxin Xu, Xiaobo Li, Mingyu Ge, L. M. Song, Shu Zhang, Shuang-Nan Zhang

Abstract

We report analysis of $\textit{Insight}$-HXMT observations of the newly discovered accreting millisecond pulsar SRGA J144459.2$-$604207. During the outburst, detected in 2024 February by $\textit{eROSITA}$, the broadband persistent spectrum was well fitted by an absorbed Comptonization model. We detected 60 type I X-ray bursts in the $\textit{Insight}$-HXMT medium energy (ME) data, and 37 were also detected with the low-energy (LE) telescope. By superimposing the $\textit{Insight}$-HXMT/LE/ME/HE light curves of 37 bursts with similar profiles and intensities, we measured a deficit of X-rays in the 40$-$70 keV energy band. By analyzing the time-resolved X-ray burst spectra, we determine the mean ratio of persistent to burst flux of $\alpha=71\pm7$. We estimate the average hydrogen mass fraction in the fuel at ignition, as $\bar{X} = 0.342 \pm 0.033$, and constrain the burst fuel composition as $X_0\lesssim0.4$. We found that 14 out of 60 X-ray bursts exhibited photospheric expansion, and thus we estimated the distance to the source as $10.03\pm 0.71$ kpc. Combined with $\textit{IXPE}$ observations, the burst recurrence time were increasing from 1.55 to 8 hr as the local mass accretion rate decreasing, which can be described as $\Delta T_{\rm rec}\sim \dot{m}^{-0.91\pm0.02}$.

Follow Us on

0 comments

Add comment