arXiv daily

High Energy Physics - Phenomenology (hep-ph)

Wed, 30 Aug 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Wed, 12 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Fluctuations and correlations of baryonic chiral partners

Authors:Volker Koch, Michał Marczenko, Krzysztof Redlich, Chihiro Sasaki

Abstract: Fluctuations and correlations of the net-baryon number play an important role in exploring critical phenomena in phase transitions of strongly interacting matter governed by Quantum chromodynamics (QCD). In this work, we use the parity doublet model to investigate the fluctuations of the net-baryon number density in hot and dense hadronic matter. The model accounts for chiral criticality within the mean-field approximation. We focus on the qualitative properties and systematics of the first- and second-order susceptibility of the net-baryon number density, and their ratios for nucleons of positive and negative parity, as well as their correlator. We show that the fluctuations of the positive-parity nucleon do not necessarily reflect the fluctuations of the total net-baryon number density at the phase boundary of the chiral phase transition. We also investigate the non-trivial structure of the correlator. Furthermore, we discuss and quantify the differences between the fluctuations of the net-baryon number density in the vicinity of the chiral and liquid-gas phase transition in nuclear matter. We indicate a possible relevance of our results with the interpretation of the experimental data on net-proton number fluctuations in heavy-ion collisions.

2.Higgs Probes of axion-like particles

Authors:Masashi Aiko, Motoi Endo

Abstract: We study axion-like particle contributions to the Higgs boson decays. The particle is assumed to couple with the standard model electroweak gauge bosons. Although direct productions of axion-like particles have often been discussed, we investigate indirect contributions to the Higgs boson decays into fermions, photons, $W$, and $Z$ bosons at the one-loop level. It is found that the corrections to the fermions are suppressed, whereas precise measurements of the di-photon channel of the Higgs boson decay can provide a significant probe of the model especially when the axion-like particle is heavy and its coupling to di-photon is suppressed.

3.Approximate Bound State Solutions of the Fractional Schrödinger Equation under the Spin-Spin-Dependent Cornell Potential

Authors:M. Abu-Shady, E. Omugbe, E. P. Inyang

Abstract: In this work, the approximate bound state solutions of the fractional Schr\"odinger equation under a spin-spin-dependent Cornell potential are obtained via the convectional Nikiforov-Uvarov approach. The energy spectra are applied to obtain the mass spectra of the heavy mesons such as bottomonium, charmonium and bottom-charm. The masses for the singlet and triplet spin numbers increase as the quantum numbers increase. The fractional Schr\"odinger equation improves the mass spectra compared to the masses obtained in the existing literature. The bottomonium masses agree with the experimental data of the Particle Data Group where percentage errors for fractional parameters of \b{eta}=1,{\alpha}=0.97 and \b{eta}=1,{\alpha}=0.50 were found to be 0.67% and 0.49% respectively. The respective percentage errors of 1.97% and 1.62% for fractional parameters of \b{eta}=1,{\alpha}=0.97 and \b{eta}=1,{\alpha}=0.50 were obtained for charmonium meson. The results indicate that the potential curves coupled with the fractional parameters account for the short-range gluon exchange between the quark-antiquark interactions and the linear confinement phenomena which is associated with the quantum chromo-dynamic and phenomenological potential models in particle and high-energy physics

4.Shedding light on neutrino self-interactions with solar antineutrino searches

Authors:Quan-feng Wu, Xun-Jie Xu

Abstract: Solar antineutrinos are absent in the standard solar model prediction. Consequently, solar antineutrino searches emerge as a powerful tool to probe new physics capable of converting neutrinos into antineutrinos. In this study, we highlight that neutrino self-interactions, recently gaining considerable attention due to their cosmological and astrophysical implications, can lead to significant solar antineutrino production. We systematically explore various types of four-fermion effective operators and light scalar mediators for neutrino self-interactions. By estimating the energy spectra and event rates of solar antineutrinos at prospective neutrino detectors such as JUNO, Hyper-Kamiokande, and THEIA, we reveal that solar antineutrino searches can impose stringent constraints on neutrino self-interactions and probe the parameter space favored by the Hubble tension.

5.Refined renormalization group improvement for thermally resummed effective potential

Authors:Koichi Funakubo, Eibun Senaha

Abstract: We newly develop a renormalization group (RG) improvement for thermally resummed effective potentials. In this method, $\beta$-functions are consistently defined in resummed perturbation theories, so that order-by-order RG invariance is not spoiled after thermal resummation. With this improvement, scale dependences of phase transition quantities such as a critical temperature, which are known to be notoriously large at the one-loop order, are greatly reduced compared to calculations with the conventional $\overline{\text{MS}}$ scheme. By taking advantage of the RG invariance, we also devise a resummation method that can incorporate potentially harmful large logarithmic terms and temperature-dependent power corrections in a generic form. We point out that a resummed one-loop effective potential refined by the method can give results that agree with those obtained by resummed two-loop effective potentials within errors.

6.A new observable for $W$-mass determination

Authors:Luca Rottoli, Paolo Torrielli, Alessandro Vicini

Abstract: In this contribution we discuss the properties of the jacobian asymmetry, the new observable introduced in hep-ph/2301.04059 for a robust determination of the value and uncertainty of the $W$-boson mass at hadron colliders.

7.Isospectrality and configurational entropy as testing tools for bottom-up AdS/QCD

Authors:Miguel Angel Martin Contreras, Alfredo Vega, Saulo Diles

Abstract: This work discusses the connection between isospectrality and configurational entropy in holographic bottom-up models. We analyze the effect of monoparametric isospectral transformation in holographic decay constants and configurational entropy for a set of softwall-like models at zero temperature. We conclude that the isospectral parameter $\lambda$ defines a window of possible holographic models suitable to describe spectroscopy.

8.Neutrino constraints on inelastic dark matter captured in the Sun

Authors:Bhavesh Chauhan, Mary Hall Reno, Carsten Rott, Ina Sarcevic

Abstract: The flux of neutrinos from annihilation of gravitationally captured dark matter in the Sun has significant constraints from direct-detection experiments. However, these constraints are relaxed for inelastic dark matter as inelastic dark matter interactions generate less energetic nuclear recoils compared to elastic dark matter interactions. In this paper, we explore the possibility for large volume underground neutrino experiments to detect the neutrino flux from captured inelastic dark matter in the Sun. The neutrino spectrum has two components: a mono-energetic "spike" from pion and kaon decays at rest and a broad-spectrum "shoulder" from prompt primary meson decays. We focus on detecting the shoulder neutrinos from annihilation of hadrophilic inelastic dark matter with masses in the range 4-100 GeV and the mass splittings in up to 300 keV. We determine the event selection criterion for DUNE to identify GeV-scale muon neutrinos and anti-neutrinos originating from hadrophilic dark matter annihilation in the Sun, and forecast the sensitivity from contained events. We also map the current bounds from Super-Kamiokande and IceCube on elastic dark matter, as well as the projected limits from Hyper-Kamiokande, to the parameter space of inelastic dark matter. We find that there is a region of parameter space that these neutrino experiments are more sensitive to than the direct-detection experiments. For dark matter annihilation to heavy-quarks, the projected sensitivity of DUNE is weaker than current (future) Super (Hyper) Kamiokande experiments. However, for the light-quark channel, only the spike is observable and DUNE will be the most sensitive experiment.

9.On the oscillating electric dipole moment induced by axion-fermion couplings

Authors:Luca Di Luzio, Hector Gisbert, Philip Sørensen

Abstract: It has been recently claimed that the axion coupling to fermions is responsible for an oscillating electric dipole moment (EDM) in the background of axion dark matter. In this work, we re-examine the derivation of this effect. Contrary to previous studies, we point out the physical relevance of an axion boundary term, which is crucial in restoring the axion shift symmetry and drastically affects the EDM phenomenology. To describe the latter, we introduce the notion of a time-integrated effective axion EDM, which encodes the boundary term and whose magnitude depends on the oscillating regime. For slow oscillations the boundary term washes out the standard oscillating EDM, resulting in an exact cancellation in the static limit. Conversely, during fast oscillations, the boundary term amplifies the effective EDM. This new observable is especially interesting in the case of the electron EDM. Remarkably, for an $\mathcal{O}(1)$ axion-electron coupling, the overall size of the effective EDM in the intermediate oscillations regime is comparable to the present static EDM limit.