arXiv daily

General Relativity and Quantum Cosmology (gr-qc)

Wed, 12 Jul 2023

Other arXiv digests in this category:Thu, 14 Sep 2023; Wed, 13 Sep 2023; Tue, 12 Sep 2023; Mon, 11 Sep 2023; Fri, 08 Sep 2023; Tue, 05 Sep 2023; Fri, 01 Sep 2023; Thu, 31 Aug 2023; Wed, 30 Aug 2023; Tue, 29 Aug 2023; Mon, 28 Aug 2023; Fri, 25 Aug 2023; Thu, 24 Aug 2023; Wed, 23 Aug 2023; Tue, 22 Aug 2023; Mon, 21 Aug 2023; Fri, 18 Aug 2023; Thu, 17 Aug 2023; Wed, 16 Aug 2023; Tue, 15 Aug 2023; Mon, 14 Aug 2023; Fri, 11 Aug 2023; Thu, 10 Aug 2023; Wed, 09 Aug 2023; Tue, 08 Aug 2023; Mon, 07 Aug 2023; Fri, 04 Aug 2023; Thu, 03 Aug 2023; Wed, 02 Aug 2023; Tue, 01 Aug 2023; Mon, 31 Jul 2023; Fri, 28 Jul 2023; Thu, 27 Jul 2023; Wed, 26 Jul 2023; Tue, 25 Jul 2023; Mon, 24 Jul 2023; Fri, 21 Jul 2023; Thu, 20 Jul 2023; Wed, 19 Jul 2023; Tue, 18 Jul 2023; Mon, 17 Jul 2023; Fri, 14 Jul 2023; Thu, 13 Jul 2023; Tue, 11 Jul 2023; Mon, 10 Jul 2023; Fri, 07 Jul 2023; Thu, 06 Jul 2023; Wed, 05 Jul 2023; Tue, 04 Jul 2023; Mon, 03 Jul 2023; Fri, 30 Jun 2023; Thu, 29 Jun 2023; Wed, 28 Jun 2023; Tue, 27 Jun 2023; Mon, 26 Jun 2023; Fri, 23 Jun 2023; Thu, 22 Jun 2023; Wed, 21 Jun 2023; Tue, 20 Jun 2023; Fri, 16 Jun 2023; Thu, 15 Jun 2023; Tue, 13 Jun 2023; Mon, 12 Jun 2023; Fri, 09 Jun 2023; Thu, 08 Jun 2023; Wed, 07 Jun 2023; Tue, 06 Jun 2023; Mon, 05 Jun 2023; Fri, 02 Jun 2023; Thu, 01 Jun 2023; Wed, 31 May 2023; Tue, 30 May 2023; Mon, 29 May 2023; Fri, 26 May 2023; Thu, 25 May 2023; Wed, 24 May 2023; Tue, 23 May 2023; Mon, 22 May 2023; Fri, 19 May 2023; Thu, 18 May 2023; Wed, 17 May 2023; Tue, 16 May 2023; Mon, 15 May 2023; Fri, 12 May 2023; Thu, 11 May 2023; Wed, 10 May 2023; Tue, 09 May 2023; Mon, 08 May 2023; Fri, 05 May 2023; Thu, 04 May 2023; Wed, 03 May 2023; Tue, 02 May 2023; Mon, 01 May 2023; Fri, 28 Apr 2023; Thu, 27 Apr 2023; Wed, 26 Apr 2023; Tue, 25 Apr 2023; Mon, 24 Apr 2023; Fri, 21 Apr 2023; Thu, 20 Apr 2023; Wed, 19 Apr 2023; Tue, 18 Apr 2023; Mon, 17 Apr 2023; Fri, 14 Apr 2023; Thu, 13 Apr 2023; Wed, 12 Apr 2023; Tue, 11 Apr 2023; Mon, 10 Apr 2023
1.Early dark energy induced by non-linear electrodynamics

Authors:H. B. Benaoum, Luz Ángela García, Leonardo Castañeda

Abstract: In this work, we introduce a parametrization of early dark energy that mimics radiation at early times and governs the present acceleration of the Universe. We show that such parametrization models non-linear electrodynamics in the early Universe and investigate the cosmological viability of the model. In our scenario, the early dark energy is encoded in the non-linearity of the electromagnetic fields through a parameter $\beta$ that changes the Lagrangian of the system, and the parameters $\gamma_s$ and $\alpha$, that define the departure from the standard model constant equation of state. We use a Bayesian method and the modular software \textsc{CosmoSIS} to find the best values for the model's free parameters with precomputed likelihoods from Planck 2018, primordial nucleosynthesis data, inferred distances from different wide galaxy surveys and luminosity distances of SNIa from Pantheon and SH0ES, such that $\gamma_s =$ 0.468 $\pm$ 0.026 and $\alpha =$ -0.947 $\pm$ 0.032, as opposed to $\Lambda$CDM where $\gamma_s = \beta =$ 0 and there is no equivalence for the $\alpha$ parameter. Our results predict an earlier formation of the structure and a shorter age of the Universe compared with the canonical cosmological model. One of the main findings of our work is that this kind of dark energy alleviates the ongoing tensions in cosmology, the Hubble tension and the so-called $\sigma_8$ tension, which predicted values by our model are H$_o =$ 70.2 $\pm$ 0.9 km/s/Mpc and $\sigma_8 =$ 0.798 $\pm$ 0.007. The reported values lie between the inferred values inferred from early and late (local) Universe observations. Future observations will shed light on the nature of the dark energy, its impact on the structure formation, and its dynamics.

2.Effective metric of spinless binaries with radiation-reaction effect up to fourth Post-Minkowskian order in effective-one-body theory

Authors:Jiliang Jing, Weike Deng, Sheng Long, Jieci Wang

Abstract: By means of the scattering angles, we obtain an effective metric of spinless binaries with radiation-reaction effects up to fourth post-Minkowskian order, which is the foundation of the effective-one-body theory. We note that there are freedoms for the parameters of the effective metric because one equation corresponds to two parameters for each post-Minkowskian order. Accordingly, in order to construct a self-consistent effective-one-body theory in which the Hamiltonian, radiation-reaction forces and waveforms for the ``plus" and ``cross" modes of the gravitational wave should be based on the same physical model, we can fix these freedoms by requiring the null tetrad component of the gravitationally perturbed Weyl tensor $\Psi_4^B$ to be decoupled in the effective spacetime.

3.Entanglement from rotating black holes in thermal baths

Authors:Ivan Agullo, Anthony J. Brady, Adrià Delhom, Dimitrios Kranas

Abstract: We extend previous efforts to quantify the entanglement generated in Hawking's evaporation process by including rotation and thermal environments (e.g. the cosmic microwave background). Both extensions are needed to describe real black holes in our universe. Leveraging techniques from Gaussian quantum information, we find that the black hole's ergoregion is an active source of quantum entanglement and that thermal environments drastically degrade entanglement generation. Our predictions are suitable to be tested in the lab using analogue platforms and also provide tools to assess the fate of quantum information for black holes in more generic settings.

4.A generalized mass-to-horizon relation: a new global approach to entropic cosmologies and its connection to \texorpdfstring{$Λ$}{Lambda}CDM

Authors:Hussain Gohar, Vincenzo Salzano

Abstract: In this letter, we propose a new generalized mass-to-horizon relation to be used in the context of entropic cosmologies and holographic principle scenarios. We show that a general scaling of the mass with the Universe horizon as $M=\gamma \frac{c^2}{G}L^n$ leads to a new generalized entropy $S_n = \gamma \frac{n}{1+n}\frac{2 \pi\,k_B\,c^3}{G\,\hbar} L^{n+1}$ from which we can recover many of the recently proposed forms of entropies at cosmological and black hole scales and also establish a thermodynamically consistent relation between each of them and Hawking temperature. We analyse the consequences of introducing this new mass-to-horizon relation on cosmological scales by comparing the corresponding modified Friedmann, acceleration, and continuity equations to cosmological data. We find that when $n=3$, the entropic cosmology model is fully and totally equivalent to the standard $\Lambda$CDM model, thus providing a new fundamental support for the origin and the nature of the cosmological constant. In general, if $\log \gamma < -3$, and irrespective of the value of $n$, we find a very good agreement with the data comparable with $\Lambda$CDM from which, in Bayesian terms, our models are indistinguishable.

5.The physical acceptability conditions and the strategies to obtain anisotropic compact objects

Authors:Daniel Suárez-Urango, Laura M. Becerra, Justo Ospino, Luis A. Núñez

Abstract: We studied five methods to include anisotropy, or unequal stress distributions, in general relativistic matter configurations. We used nine acceptability conditions that the metric and physical variables must meet to determine if our models were astrophysically viable. Our analysis found the most effective way to introduce anisotropy while keeping a simple density profile. We also found a practical "rule of thumb'' that relates the density at the boundary to the density at the centre of relativistic matter distributions. Additionally, we calculated the configuration radius and encountered that values observed by NICER for PSR J0740+6620 are consistent with several acceptable matter configurations, both isotropic and anisotropic.

6.The first law for stationary axisymmetric multi-black hole systems

Authors:Gérard Clément, Dmitry Gal'tsov

Abstract: In the framework of Einstein-Maxwell theory, we consider collinear arrays of rotating electrically charged black holes connected by Misner-Dirac strings carrying gravimagnetic and magnetic fluxes. The first law of mechanics for these systems is derived. It involves as dynamical variables the areas, angular momenta and electric charges of the various Killing horizons -- black holes and Misner strings. When the gravimagnetic fluxes all vanish, the first law reduces to a form where the dynamical variables associated with the strings are the string tensions and magnetic fluxes. This form is not generically invariant under electric-magnetic duality.