Strongly-Correlated Electron-Photon Systems
Authors
Jacqueline Bloch et al
Abstract
An important goal of modern condensed matter physics involves the search for states of matter with new emergent properties and desirable functionalities. Although the tools for material design remain relatively limited, notable advances have been recently achieved by controlling interactions at hetero-interfaces , precise alignment of low-dimensional materials and the use of extreme pressures . Here, we highlight a new paradigm, based on controlling light-matter interactions, which provides a new way to manipulate and synthesize strongly correlated quantum matter. We consider the case in which both electron-electron and electron-photon interactions are strong and give rise to a variety of novel phenomena. Photon-mediated superconductivity, cavity-fractional quantum Hall physics and optically driven topological phenomena in low dimensions are amongst the frontiers discussed in this perspective, which puts a spotlight on a new field that we term here “strongly-correlated electron-photon science.”