Poster
2

Using Sequences of Life-events to Predict Human Lives

Avatar
Voices Powered byElevenlabs logo

Avatar
user

what is the life-sequence?

AI: The life-sequence is a representation of a person's life as a string of sentences, where each sentence represents a life-event with detailed qualifying information attached. The life-sequence is constructed based on labor and health records from Danish national registers, and each event in the sequence is comprised of synthetic words or concept tokens that are created using a simple symbolic language and an encoding of time.

Authors

Germans Savcisens, Tina Eliassi-Rad, Lars Kai Hansen, Laust Mortensen, Lau Lilleholt, Anna Rogers, Ingo Zettler, Sune Lehmann

Abstract

Over the past decade, machine learning has revolutionized computers' ability to analyze text through flexible computational models. Due to their structural similarity to written language, transformer-based architectures have also shown promise as tools to make sense of a range of multi-variate sequences from protein-structures, music, electronic health records to weather-forecasts. We can also represent human lives in a way that shares this structural similarity to language. From one perspective, lives are simply sequences of events: People are born, visit the pediatrician, start school, move to a new location, get married, and so on. Here, we exploit this similarity to adapt innovations from natural language processing to examine the evolution and predictability of human lives based on detailed event sequences. We do this by drawing on arguably the most comprehensive registry data in existence, available for an entire nation of more than six million individuals across decades. Our data include information about life-events related to health, education, occupation, income, address, and working hours, recorded with day-to-day resolution. We create embeddings of life-events in a single vector space showing that this embedding space is robust and highly structured. Our models allow us to predict diverse outcomes ranging from early mortality to personality nuances, outperforming state-of-the-art models by a wide margin. Using methods for interpreting deep learning models, we probe the algorithm to understand the factors that enable our predictions. Our framework allows researchers to identify new potential mechanisms that impact life outcomes and associated possibilities for personalized interventions.

Follow Us on

0 comments

Add comment
Recommended SciCasts