Quantum Computing for MIMO Beam Selection Problem: Model and Optical Experimental Solution

Avatar
Poster
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Quantum Computing for MIMO Beam Selection Problem: Model and Optical Experimental Solution

Authors

Yuhong Huang, Wenxin Li, Chengkang Pan, Shuai Hou, Xian Lu, Chunfeng Cui, Jingwei Wen, Jiaqi Xu, Chongyu Cao, Yin Ma, Hai Wei, Kai Wen

Abstract

Massive multiple-input multiple-output (MIMO) has gained widespread popularity in recent years due to its ability to increase data rates, improve signal quality, and provide better coverage in challenging environments. In this paper, we investigate the MIMO beam selection (MBS) problem, which is proven to be NP-hard and computationally intractable. To deal with this problem, quantum computing that can provide faster and more efficient solutions to large-scale combinatorial optimization is considered. MBS is formulated in a quadratic unbounded binary optimization form and solved with Coherent Ising Machine (CIM) physical machine. We compare the performance of our solution with two classic heuristics, simulated annealing and Tabu search. The results demonstrate an average performance improvement by a factor of 261.23 and 20.6, respectively, which shows that CIM-based solution performs significantly better in terms of selecting the optimal subset of beams. This work shows great promise for practical 5G operation and promotes the application of quantum computing in solving computationally hard problems in communication.

Follow Us on

0 comments

Add comment