Speciality vs Generality: An Empirical Study on Catastrophic Forgetting in Fine-tuning Foundation Models

Avatar
Presentation is building ... The process may take up to 3 minutes. If the page does not reload automatically, please reload it manually.
Voices Powered byElevenlabs logo
Connected to paperThis paper is a preprint and has not been certified by peer review

Speciality vs Generality: An Empirical Study on Catastrophic Forgetting in Fine-tuning Foundation Models

Authors

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie Pi, Jipeng Zhang, Shizhe Diao, Haoxiang Wang, Han Zhao, Yuan Yao, Tong Zhang

Abstract

Foundation models, including Vision Language Models (VLMs) and Large Language Models (LLMs), possess the $generality$ to handle diverse distributions and tasks, which stems from their extensive pre-training datasets. The fine-tuning of foundation models is a common practice to enhance task performance or align the model's behavior with human expectations, allowing them to gain $speciality$. However, the small datasets used for fine-tuning may not adequately cover the diverse distributions and tasks encountered during pre-training. Consequently, the pursuit of speciality during fine-tuning can lead to a loss of {generality} in the model, which is related to catastrophic forgetting (CF) in deep learning. In this study, we demonstrate this phenomenon in both VLMs and LLMs. For instance, fine-tuning VLMs like CLIP on ImageNet results in a loss of generality in handling diverse distributions, and fine-tuning LLMs like Galactica in the medical domain leads to a loss in following instructions and common sense. To address the trade-off between the speciality and generality, we investigate multiple regularization methods from continual learning, the weight averaging method (Wise-FT) from out-of-distributional (OOD) generalization, which interpolates parameters between pre-trained and fine-tuned models, and parameter-efficient fine-tuning methods like Low-Rank Adaptation (LoRA). Our findings show that both continual learning and Wise-ft methods effectively mitigate the loss of generality, with Wise-FT exhibiting the strongest performance in balancing speciality and generality.

Follow Us on

0 comments

Add comment