Active Label Refinement for Semantic Segmentation of Satellite Images

Avatar
Poster
Voice is AI-generated
Connected to paperThis paper is a preprint and has not been certified by peer review

Active Label Refinement for Semantic Segmentation of Satellite Images

Authors

Tuan Pham Minh, Jayan Wijesingha, Daniel Kottke, Marek Herde, Denis Huseljic, Bernhard Sick, Michael Wachendorf, Thomas Esch

Abstract

Remote sensing through semantic segmentation of satellite images contributes to the understanding and utilisation of the earth's surface. For this purpose, semantic segmentation networks are typically trained on large sets of labelled satellite images. However, obtaining expert labels for these images is costly. Therefore, we propose to rely on a low-cost approach, e.g. crowdsourcing or pretrained networks, to label the images in the first step. Since these initial labels are partially erroneous, we use active learning strategies to cost-efficiently refine the labels in the second step. We evaluate the active learning strategies using satellite images of Bengaluru in India, labelled with land cover and land use labels. Our experimental results suggest that an active label refinement to improve the semantic segmentation network's performance is beneficial.

Follow Us on

0 comments

Add comment