Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies



Taejoon Kong, Nicholas Backes, Upender Kalwa, Chris Legner, Greg Phillips, Santosh Pandey


The ability to study bacteria at the single cell level has advanced our insights into microbial physiology and genetics in ways not attainable by studying large populations using more traditional culturing methods. To improve methods to characterize bacteria at the cellular level, we developed a new microfluidic platform that enables cells to be exposed to metabolites in a gradient of concentrations. By designing low-cost, three-dimensional devices with adhesive tapes and tailoring them for bacterial imaging, we avoided the complexities of silicon and polymeric microfabrication. The incorporation of an agarose membrane as the resting substrate, along with a temperature-controlled environmental chamber, allows the culturing of bacterial cells for over 10 h under stable growth or inhibition conditions. Incorporation of an autofocusing module helped the uninterrupted, high-resolution observation of bacteria at the single-cell and at low density population levels. We used the microfluidic platform to record morphological changes in Escherichia coli during ampicillin exposure and to quantify the minimum inhibitory concentration of the antibiotic. We further demonstrated the potential of finely-tuned, incremental gene regulation in a concentration gradient utilizing CRISPR interference (CRISPRi). These low-cost engineering tools, when implemented in combination with genetic approaches such as CRISPRi, should prove useful to uncover new genetic determinants of antibiotic susceptibility and evaluate the long-term effectiveness of antibiotics in bacterial cultures.


Recommended SciCasts
Introduction to ScienceCast
Spin-plasma waves
SoK: Yield Aggregators in DeFi
Liquidations: DeFi on a Knife-edge
Equatorial magnetoplasma waves
Quantum chemistry on quantum annealers
Cosmic Birefringence in 2022